BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38126234)

  • 1. Shaping the chromatin landscape at rRNA and tRNA genes, an emerging new role for RNA polymerase II transcription?
    Yague-Sanz C
    Yeast; 2024 Apr; 41(4):135-147. PubMed ID: 38126234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Locus-specific proteome decoding reveals Fpt1 as a chromatin-associated negative regulator of RNA polymerase III assembly.
    van Breugel ME; van Kruijsbergen I; Mittal C; Lieftink C; Brouwer I; van den Brand T; Kluin RJC; Hoekman L; Menezes RX; van Welsem T; Del Cortona A; Malik M; Beijersbergen RL; Lenstra TL; Verstrepen KJ; Pugh BF; van Leeuwen F
    Mol Cell; 2023 Dec; 83(23):4205-4221.e9. PubMed ID: 37995691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disordered C-terminal domain drives spatiotemporal confinement of RNAPII to enhance search for chromatin targets.
    Ling YH; Ye Z; Liang C; Yu C; Park G; Corden JL; Wu C
    Nat Cell Biol; 2024 Apr; 26(4):581-592. PubMed ID: 38548891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The C-terminal domain of Rpb1 functions on other RNA polymerase II subunits.
    Suh H; Hazelbaker DZ; Soares LM; Buratowski S
    Mol Cell; 2013 Sep; 51(6):850-8. PubMed ID: 24035501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Eukaryotic RNAPs Activities by Phosphorylation.
    González-Jiménez A; Campos A; Navarro F; Clemente-Blanco A; Calvo O
    Front Mol Biosci; 2021; 8():681865. PubMed ID: 34250017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific Features of RNA Polymerases I and III: Structure and Assembly.
    Turowski TW; Boguta M
    Front Mol Biosci; 2021; 8():680090. PubMed ID: 34055890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phospho-site mutants of the RNA Polymerase II C-terminal domain alter subtelomeric gene expression and chromatin modification state in fission yeast.
    Inada M; Nichols RJ; Parsa JY; Homer CM; Benn RA; Hoxie RS; Madhani HD; Shuman S; Schwer B; Pleiss JA
    Nucleic Acids Res; 2016 Nov; 44(19):9180-9189. PubMed ID: 27402158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation.
    Kizer KO; Phatnani HP; Shibata Y; Hall H; Greenleaf AL; Strahl BD
    Mol Cell Biol; 2005 Apr; 25(8):3305-16. PubMed ID: 15798214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of viral DNA-dependent RNA polymerases.
    Sonntag KC; Darai G
    Virus Genes; 1995; 11(2-3):271-84. PubMed ID: 8828152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA polymerase II (RNAP II)-associated factors are recruited to tRNA loci, revealing that RNAP II- and RNAP III-mediated transcriptions overlap in yeast.
    Trotta E
    J Biol Chem; 2019 Aug; 294(33):12349-12358. PubMed ID: 31235518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three human RNA polymerases interact with TFIIH via a common RPB6 subunit.
    Okuda M; Suwa T; Suzuki H; Yamaguchi Y; Nishimura Y
    Nucleic Acids Res; 2022 Jan; 50(1):1-16. PubMed ID: 34268577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The RNAPII-CTD Maintains Genome Integrity through Inhibition of Retrotransposon Gene Expression and Transposition.
    Aristizabal MJ; Negri GL; Kobor MS
    PLoS Genet; 2015 Oct; 11(10):e1005608. PubMed ID: 26496706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A unique nucleosome arrangement, maintained actively by chromatin remodelers facilitates transcription of yeast tRNA genes.
    Kumar Y; Bhargava P
    BMC Genomics; 2013 Jun; 14():402. PubMed ID: 23767421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging roles for RNA polymerase II CTD in Arabidopsis.
    Hajheidari M; Koncz C; Eick D
    Trends Plant Sci; 2013 Nov; 18(11):633-43. PubMed ID: 23910452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcription by RNA polymerase II and the CTD-chromatin crosstalk.
    Singh N; Asalam M; Ansari MO; Gerasimova NS; Studitsky VM; Akhtar MS
    Biochem Biophys Res Commun; 2022 Apr; 599():81-86. PubMed ID: 35176629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. WDR82/PNUTS-PP1 Prevents Transcription-Replication Conflicts by Promoting RNA Polymerase II Degradation on Chromatin.
    Landsverk HB; Sandquist LE; Bay LTE; Steurer B; Campsteijn C; Landsverk OJB; Marteijn JA; Petermann E; Trinkle-Mulcahy L; Syljuåsen RG
    Cell Rep; 2020 Dec; 33(9):108469. PubMed ID: 33264625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PIP2-Effector Protein MPRIP Regulates RNA Polymerase II Condensation and Transcription.
    Balaban C; Sztacho M; Antiga L; Miladinović A; Harata M; Hozák P
    Biomolecules; 2023 Feb; 13(3):. PubMed ID: 36979361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disordered C-terminal domain drives spatiotemporal confinement of RNAPII to enhance search for chromatin targets.
    Ling YH; Ye Z; Liang C; Yu C; Park G; Corden JL; Wu C
    bioRxiv; 2023 Nov; ():. PubMed ID: 37577667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional interaction of Rpb1 and Spt5 C-terminal domains in co-transcriptional histone modification.
    Mbogning J; Pagé V; Burston J; Schwenger E; Fisher RP; Schwer B; Shuman S; Tanny JC
    Nucleic Acids Res; 2015 Nov; 43(20):9766-75. PubMed ID: 26275777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription.
    Heidemann M; Hintermair C; Voß K; Eick D
    Biochim Biophys Acta; 2013 Jan; 1829(1):55-62. PubMed ID: 22982363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.