These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 38126783)
21. Blending In Situ Polyurethane-Urea with Different Kinds of Rubber: Performance and Compatibility Aspects. Tahir M; Heinrich G; Mahmood N; Boldt R; Wießner S; Stöckelhuber KW Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30400253 [TBL] [Abstract][Full Text] [Related]
22. Structural Analysis of the Terminal Groups in Commercial Hevea Natural Rubber by 2D-NMR with DOSY Filters and Multiple-WET Methods Using Ultrahigh-Field NMR. Oouchi M; Ukawa J; Ishii Y; Maeda H Biomacromolecules; 2019 Mar; 20(3):1394-1400. PubMed ID: 30753057 [TBL] [Abstract][Full Text] [Related]
23. Development and Characterization of Bacterial Cellulose Reinforced with Natural Rubber. Potivara K; Phisalaphong M Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31330890 [TBL] [Abstract][Full Text] [Related]
24. Structure of cis-polyisoprene from Lactarius mushrooms. Tanaka Y; Kawahara S; Eng AH; Takei A; Ohya N Acta Biochim Pol; 1994; 41(3):303-9. PubMed ID: 7856401 [TBL] [Abstract][Full Text] [Related]
25. Molecular Dynamics Studies of the Mechanical Behaviors and Thermal Conductivity of Polyisoprene with Different Degrees of Polymerization. Chen Z; Tu Q; Fang Z; Shen X; Yin Q; Zhang X; Pan M Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433077 [TBL] [Abstract][Full Text] [Related]
26. Cornmeal Graphene/Natural Rubber Nanocomposites: Effect of Modified Graphene on Mechanical and Thermal Properties. Wu W; Yu B ACS Omega; 2020 Apr; 5(15):8551-8556. PubMed ID: 32337416 [TBL] [Abstract][Full Text] [Related]
27. Nanocomposite of Fullerenes and Natural Rubbers: MARTINI Force Field Molecular Dynamics Simulations. Kitjanon J; Khuntawee W; Phongphanphanee S; Sutthibutpong T; Chattham N; Karttunen M; Wong-Ekkabut J Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833344 [TBL] [Abstract][Full Text] [Related]
28. Biobased epoxidized natural rubber/sodium carboxymethyl cellulose composites with enhanced strength and healing ability. Yang X; Guo Y; Kong L; Lu J; Lin B; Xu C Int J Biol Macromol; 2023 Jul; 242(Pt 1):124681. PubMed ID: 37141968 [TBL] [Abstract][Full Text] [Related]
35. Effect of pretreatment of rubber material on its biodegradability by various rubber degrading bacteria. Berekaa MM; Linos A; Reichelt R; Keller U; Steinbüchel A FEMS Microbiol Lett; 2000 Mar; 184(2):199-206. PubMed ID: 10713421 [TBL] [Abstract][Full Text] [Related]
36. Biodegradation of cis-1,4-polyisoprene rubbers by distinct actinomycetes: microbial strategies and detailed surface analysis. Linos A; Berekaa MM; Reichelt R; Keller U; Schmitt J; Flemming HC; Kroppenstedt RM; Steinbüchel A Appl Environ Microbiol; 2000 Apr; 66(4):1639-45. PubMed ID: 10742254 [TBL] [Abstract][Full Text] [Related]
37. Structural characterization of natural rubber based on recent evidence from selective enzymatic treatments. Sakdapipanich JT J Biosci Bioeng; 2007 Apr; 103(4):287-92. PubMed ID: 17502267 [TBL] [Abstract][Full Text] [Related]
38. A comprehensive review on the recent advancements in natural rubber nanocomposites. Sethulekshmi AS; Saritha A; Joseph K Int J Biol Macromol; 2022 Jan; 194():819-842. PubMed ID: 34838576 [TBL] [Abstract][Full Text] [Related]
39. Multifunctional role of tannic acid in improving the mechanical, thermal and antimicrobial properties of natural rubber-molybdenum disulfide nanocomposites. Sethulekshmi AS; Saritha A; Joseph K; Aprem AS; Sisupal SB; Nair VS; G S Int J Biol Macromol; 2023 Jan; 225():351-360. PubMed ID: 36427617 [TBL] [Abstract][Full Text] [Related]
40. Recyclable, Healable, and Tough Ionogels Insensitive to Crack Propagation. Li W; Li L; Zheng S; Liu Z; Zou X; Sun Z; Guo J; Yan F Adv Mater; 2022 Jul; 34(28):e2203049. PubMed ID: 35522456 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]