BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 38126787)

  • 1. Nine (not so simple) steps: a practical guide to using machine learning in microbial ecology.
    Walsh C; Stallard-Olivera E; Fierer N
    mBio; 2024 Feb; 15(2):e0205023. PubMed ID: 38126787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning methods without tears: a primer for ecologists.
    Olden JD; Lawler JJ; Poff NL
    Q Rev Biol; 2008 Jun; 83(2):171-93. PubMed ID: 18605534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning applications in microbial ecology, human microbiome studies, and environmental monitoring.
    Ghannam RB; Techtmann SM
    Comput Struct Biotechnol J; 2021; 19():1092-1107. PubMed ID: 33680353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning to predict microbial community functions: An analysis of dissolved organic carbon from litter decomposition.
    Thompson J; Johansen R; Dunbar J; Munsky B
    PLoS One; 2019; 14(7):e0215502. PubMed ID: 31260460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of the covariation of lake microbiomes and environmental variables using a machine learning-based framework.
    Sperlea T; Kreuder N; Beisser D; Hattab G; Boenigk J; Heider D
    Mol Ecol; 2021 May; 30(9):2131-2144. PubMed ID: 33682183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning for data integration in human gut microbiome.
    Li P; Luo H; Ji B; Nielsen J
    Microb Cell Fact; 2022 Nov; 21(1):241. PubMed ID: 36419034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compare the performance of multiple binary classification models in microbial high-throughput sequencing datasets.
    Xu N; Zhang Z; Shen Y; Zhang Q; Liu Z; Yu Y; Wang Y; Lei C; Ke M; Qiu D; Lu T; Chen Y; Xiong J; Qian H
    Sci Total Environ; 2022 Sep; 837():155807. PubMed ID: 35537509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compositionality, sparsity, spurious heterogeneity, and other data-driven challenges for machine learning algorithms within plant microbiome studies.
    Busato S; Gordon M; Chaudhari M; Jensen I; Akyol T; Andersen S; Williams C
    Curr Opin Plant Biol; 2023 Feb; 71():102326. PubMed ID: 36538837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilizing the Microbiota and Machine Learning Algorithms To Assess Risk of Salmonella Contamination in Poultry Rinsate.
    Bolinger H; Tran D; Harary K; Paoli GC; Guron GKP; Namazi H; Khaksar R
    J Food Prot; 2021 Sep; 84(9):1648-1657. PubMed ID: 34015130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporating microbial community data with machine learning techniques to predict feed substrates in microbial fuel cells.
    Cai W; Lesnik KL; Wade MJ; Heidrich ES; Wang Y; Liu H
    Biosens Bioelectron; 2019 May; 133():64-71. PubMed ID: 30909014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Experimentalist's Guide to Machine Learning for Small Molecule Design.
    Lindley SE; Lu Y; Shukla D
    ACS Appl Bio Mater; 2024 Feb; 7(2):657-684. PubMed ID: 37535819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Machine Learning and Land Use Regression for fine scale spatiotemporal estimation of ambient air pollution: Modeling ozone concentrations across the contiguous United States.
    Ren X; Mi Z; Georgopoulos PG
    Environ Int; 2020 Sep; 142():105827. PubMed ID: 32593834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of machine learning algorithms to identify cryptic reproductive habitats using diverse information sources.
    Brownscombe JW; Griffin LP; Morley D; Acosta A; Hunt J; Lowerre-Barbieri SK; Adams AJ; Danylchuk AJ; Cooke SJ
    Oecologia; 2020 Oct; 194(1-2):283-298. PubMed ID: 33006076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can Machine Learning Algorithms Predict Which Patients Will Achieve Minimally Clinically Important Differences From Total Joint Arthroplasty?
    Fontana MA; Lyman S; Sarker GK; Padgett DE; MacLean CH
    Clin Orthop Relat Res; 2019 Jun; 477(6):1267-1279. PubMed ID: 31094833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ecologically informed microbial biomarkers and accurate classification of mixed and unmixed samples in an extensive cross-study of human body sites.
    Tackmann J; Arora N; Schmidt TSB; Rodrigues JFM; von Mering C
    Microbiome; 2018 Oct; 6(1):192. PubMed ID: 30355348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying keystone species in microbial communities using deep learning.
    Wang XW; Sun Z; Jia H; Michel-Mata S; Angulo MT; Dai L; He X; Weiss ST; Liu YY
    Nat Ecol Evol; 2024 Jan; 8(1):22-31. PubMed ID: 37974003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine Learning Predicts Biogeochemistry from Microbial Community Structure in a Complex Model System.
    Dutta A; Goldman T; Keating J; Burke E; Williamson N; Dirmeier R; Bowman JS
    Microbiol Spectr; 2022 Feb; 10(1):e0190921. PubMed ID: 35138192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How to make more from exposure data? An integrated machine learning pipeline to predict pathogen exposure.
    Fountain-Jones NM; Machado G; Carver S; Packer C; Recamonde-Mendoza M; Craft ME
    J Anim Ecol; 2019 Oct; 88(10):1447-1461. PubMed ID: 31330063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TADA: phylogenetic augmentation of microbiome samples enhances phenotype classification.
    Sayyari E; Kawas B; Mirarab S
    Bioinformatics; 2019 Jul; 35(14):i31-i40. PubMed ID: 31510701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relationship between land cover and microbial community composition in European lakes.
    Sperlea T; Schenk JP; Dreßler H; Beisser D; Hattab G; Boenigk J; Heider D
    Sci Total Environ; 2022 Jun; 825():153732. PubMed ID: 35157872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.