These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 38126811)

  • 1. OctoShaker: A versatile robotic biomechanical agitator for cellular and organoid research.
    Huang Y; Lee S; Liu W; Takayama S; Jia S
    Rev Sci Instrum; 2023 Dec; 94(12):. PubMed ID: 38126811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a novel in vitro cadaveric model for analysis of biomechanics and surgical treatment of Bertolotti syndrome.
    Golubovsky JL; Colbrunn RW; Klatte RS; Nagle TF; Briskin IN; Chakravarthy VB; Gillespie CM; Reith JD; Jasty N; Benzel EC; Steinmetz MP
    Spine J; 2020 Apr; 20(4):638-656. PubMed ID: 31669612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robotic application of a dynamic resultant force vector using real-time load-control: simulation of an ideal follower load on Cadaveric L4-L5 segments.
    Bennett CR; Kelly BP
    J Biomech; 2013 Aug; 46(12):2087-92. PubMed ID: 23809771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An overview of robotic/mechanical devices for post-stroke thumb rehabilitation.
    Suarez-Escobar M; Rendon-Velez E
    Disabil Rehabil Assist Technol; 2018 Oct; 13(7):683-703. PubMed ID: 29334274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocompatible micro tweezers for 3D hydrogel organoid array mechanical characterization.
    Alhudaithy S; Hoshino K
    PLoS One; 2022; 17(1):e0262950. PubMed ID: 35073389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of robotic technology for diathrodial joint research.
    Woo SL; Debski RE; Wong EK; Yagi M; Tarinelli D
    J Sci Med Sport; 1999 Dec; 2(4):283-97. PubMed ID: 10710007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The concept of spatial motion restriction zones in a robot-assisted surgical system.
    Prokhorenko L; Klimov D; Vorotnikov A; Mishchenkov D; Poduraev Y
    J Robot Surg; 2022 Apr; 16(2):445-452. PubMed ID: 34101124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fully automated high-throughput workflow for 3D-based chemical screening in human midbrain organoids.
    Renner H; Grabos M; Becker KJ; Kagermeier TE; Wu J; Otto M; Peischard S; Zeuschner D; TsyTsyura Y; Disse P; Klingauf J; Leidel SA; Seebohm G; Schöler HR; Bruder JM
    Elife; 2020 Nov; 9():. PubMed ID: 33138918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-substratum and cell-cell adhesion forces and single-cell mechanical properties in mono- and multilayer assemblies from robotic fluidic force microscopy.
    Nagy ÁG; Székács I; Bonyár A; Horvath R
    Eur J Cell Biol; 2022; 101(4):151273. PubMed ID: 36088812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a 6DOF robotic motion phantom for radiation therapy.
    Belcher AH; Liu X; Grelewicz Z; Pearson E; Wiersma RD
    Med Phys; 2014 Dec; 41(12):121704. PubMed ID: 25471951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward versatile cooperative surgical robotics: a review and future challenges.
    Schleer P; Drobinsky S; de la Fuente M; Radermacher K
    Int J Comput Assist Radiol Surg; 2019 Oct; 14(10):1673-1686. PubMed ID: 30830511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Body-mounted robotic instrument guide for image-guided cryotherapy of renal cancer.
    Hata N; Song SE; Olubiyi O; Arimitsu Y; Fujimoto K; Kato T; Tuncali K; Tani S; Tokuda J
    Med Phys; 2016 Feb; 43(2):843-53. PubMed ID: 26843245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical force drives the initial mesenchymal-epithelial interaction during skin organoid development.
    Wang M; Zhou X; Zhou S; Wang M; Jiang J; Wu W; Liu T; Xu W; Zhang J; Liu D; Zou Y; Qiu W; Zhang M; Liu W; Li Z; Wang D; Li T; Li J; Liu W; Yang L; Lei M
    Theranostics; 2023; 13(9):2930-2945. PubMed ID: 37284452
    [No Abstract]   [Full Text] [Related]  

  • 15. Development of a master-slave 3D printed robotic surgical finger with haptic feedback.
    Hamdi JT; Munshi S; Azam S; Omer A
    J Robot Surg; 2024 Jan; 18(1):43. PubMed ID: 38236452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A robotic honeycomb for interaction with a honeybee colony.
    Barmak R; Stefanec M; Hofstadler DN; Piotet L; Schönwetter-Fuchs-Schistek S; Mondada F; Schmickl T; Mills R
    Sci Robot; 2023 Mar; 8(76):eadd7385. PubMed ID: 36947600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 4D Materials with Photoadaptable Properties Instruct and Enhance Intestinal Organoid Development.
    Yavitt FM; Kirkpatrick BE; Blatchley MR; Anseth KS
    ACS Biomater Sci Eng; 2022 Nov; 8(11):4634-4638. PubMed ID: 35298149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-specific biomechanical challenges and engagement in dynamic balance training with robotic or virtual real-time visual feedback.
    Segal AD; Petruska AJ; Adamczyk PG; Silverman AK
    J Biomech; 2023 May; 152():111574. PubMed ID: 37043927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compensatory motion scaling for time-delayed robotic surgery.
    Orosco RK; Lurie B; Matsuzaki T; Funk EK; Divi V; Holsinger FC; Hong S; Richter F; Das N; Yip M
    Surg Endosc; 2021 Jun; 35(6):2613-2618. PubMed ID: 32514831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A robotic fish caudal fin: effects of stiffness and motor program on locomotor performance.
    Esposito CJ; Tangorra JL; Flammang BE; Lauder GV
    J Exp Biol; 2012 Jan; 215(Pt 1):56-67. PubMed ID: 22162853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.