These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38126917)

  • 1. Office paper and laser printing: a versatile and affordable approach for fabricating paper-based analytical devices with multimodal detection capabilities.
    Sousa LR; Guinati BGS; Maciel LIL; Baldo TA; Duarte LC; Takeuchi RM; Faria RC; Vaz BG; Paixão TRLC; Coltro WKT
    Lab Chip; 2024 Jan; 24(3):467-479. PubMed ID: 38126917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of paper-based analytical devices using stencil-printed glass varnish barriers for colorimetric detection of salivary α-amylase.
    Silva-Neto HA; Jaime JC; Rocha DS; Sgobbi LF; Coltro WKT
    Anal Chim Acta; 2024 Apr; 1297():342336. PubMed ID: 38438226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple, fast, and instrumentless fabrication of paper analytical devices by novel contact stamping method based on acrylic varnish and 3D printing.
    de Araujo TA; de Moraes NC; Petroni JM; Ferreira VS; Lucca BG
    Mikrochim Acta; 2021 Nov; 188(12):437. PubMed ID: 34837526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "Do it yourself" protocol to fabricate dual-detection paper-based analytical device for salivary biomarker analysis.
    Sousa LR; Silva-Neto HA; Castro LF; Oliveira KA; Figueredo F; Cortón E; Coltro WKT
    Anal Bioanal Chem; 2023 Jul; 415(18):4391-4400. PubMed ID: 36773069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional toner for office laser printer and its application for printing of paper-based superwettable patterns and devices.
    Liu Y; Liu X; Chen J; Zhang Z; Feng L
    Sci Rep; 2023 Aug; 13(1):12592. PubMed ID: 37537193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Easy and rapid pen-on-paper protocol for fabrication of paper analytical devices using inexpensive acrylate-based plastic welding repair kit.
    Aguilar LG; Petroni JM; Ferreira VS; Lucca BG
    Talanta; 2020 Nov; 219():121246. PubMed ID: 32887137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of Paper-Based Microfluidics by Spray on Printed Paper.
    Juang YJ; Hsu SK
    Polymers (Basel); 2022 Feb; 14(3):. PubMed ID: 35160629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays.
    Chiang CK; Kurniawan A; Kao CY; Wang MJ
    Talanta; 2019 Mar; 194():837-845. PubMed ID: 30609613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of disposable electrochemical devices using silver ink and office paper.
    de Araujo WR; Paixão TR
    Analyst; 2014 Jun; 139(11):2742-7. PubMed ID: 24715150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple method for patterning poly(dimethylsiloxane) barriers in paper using contact-printing with low-cost rubber stamps.
    Dornelas KL; Dossi N; Piccin E
    Anal Chim Acta; 2015 Feb; 858():82-90. PubMed ID: 25597806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of nitrite in saliva using microfluidic paper-based analytical devices.
    Bhakta SA; Borba R; Taba M; Garcia CD; Carrilho E
    Anal Chim Acta; 2014 Jan; 809():117-22. PubMed ID: 24418141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent applications of paper-based point-of-care devices for biomarker detection.
    Suntornsuk W; Suntornsuk L
    Electrophoresis; 2020 Mar; 41(5-6):287-305. PubMed ID: 31613392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of laser printed microfluidic paper-based analytical devices (LP-µPADs) for point-of-care applications.
    Ghosh R; Gopalakrishnan S; Savitha R; Renganathan T; Pushpavanam S
    Sci Rep; 2019 May; 9(1):7896. PubMed ID: 31133720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser engraved microapillary pump paper-based microfluidic device for colorimetric and electrochemical detection of salivary thiocyanate.
    Pungjunun K; Yakoh A; Chaiyo S; Praphairaksit N; Siangproh W; Kalcher K; Chailapakul O
    Mikrochim Acta; 2021 Mar; 188(4):140. PubMed ID: 33772376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Draw your assay: Fabrication of low-cost paper-based diagnostic and multi-well test zones by drawing on a paper.
    Oyola-Reynoso S; Heim AP; Halbertsma-Black J; Zhao C; Tevis ID; Çınar S; Cademartiri R; Liu X; Bloch JF; Thuo MM
    Talanta; 2015 Nov; 144():289-93. PubMed ID: 26452824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding wax screen-printing: a novel patterning process for microfluidic cloth-based analytical devices.
    Liu M; Zhang C; Liu F
    Anal Chim Acta; 2015 Sep; 891():234-46. PubMed ID: 26388382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beyond Wax Printing: Fabrication of Paper-Based Microfluidic Devices Using a Thermal Transfer Printer.
    Ruiz RA; Gonzalez JL; Vazquez-Alvarado M; Martinez NW; Martinez AW
    Anal Chem; 2022 Jun; 94(25):8833-8837. PubMed ID: 35694851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paper-Based Sensors: Emerging Themes and Applications.
    Singh AT; Lantigua D; Meka A; Taing S; Pandher M; Camci-Unal G
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30154323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Portable and low-cost colorimetric office paper-based device for phenacetin detection in seized cocaine samples.
    da Silva GO; de Araujo WR; Paixão TRLC
    Talanta; 2018 Jan; 176():674-678. PubMed ID: 28917806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. T-shirt ink for one-step screen-printing of hydrophobic barriers for 2D- and 3D-microfluidic paper-based analytical devices.
    Sitanurak J; Fukana N; Wongpakdee T; Thepchuay Y; Ratanawimarnwong N; Amornsakchai T; Nacapricha D
    Talanta; 2019 Dec; 205():120113. PubMed ID: 31450420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.