BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 38126947)

  • 1. Aberrant light sensing and motility in the green alga
    Poirier M; Osmers P; Wilkins K; Morgan-Kiss RM; Cvetkovska M
    Plant Signal Behav; 2023 Dec; 18(1):2184588. PubMed ID: 38126947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Presence and absence of light-independent chlorophyll biosynthesis among
    Smith DR; Cvetkovska M; Hüner NPA; Morgan-Kiss R
    Commun Integr Biol; 2019; 12(1):148-150. PubMed ID: 31666915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Antarctic psychrophiles Chlamydomonas spp. UWO241 and ICE-MDV exhibit differential restructuring of photosystem I in response to iron.
    Cook G; Teufel A; Kalra I; Li W; Wang X; Priscu J; Morgan-Kiss R
    Photosynth Res; 2019 Aug; 141(2):209-228. PubMed ID: 30729447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Palmelloid formation in the Antarctic psychrophile,
    Szyszka-Mroz B; Ivanov AG; Trick CG; Hüner NPA
    Front Plant Sci; 2022; 13():911035. PubMed ID: 36119589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycerol Is an Osmoprotectant in Two Antarctic
    Raymond JA; Morgan-Kiss R; Stahl-Rommel S
    Front Plant Sci; 2020; 11():1259. PubMed ID: 32973829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptation to Extreme Antarctic Environments Revealed by the Genome of a Sea Ice Green Alga.
    Zhang Z; Qu C; Zhang K; He Y; Zhao X; Yang L; Zheng Z; Ma X; Wang X; Wang W; Wang K; Li D; Zhang L; Zhang X; Su D; Chang X; Zhou M; Gao D; Jiang W; Leliaert F; Bhattacharya D; De Clerck O; Zhong B; Miao J
    Curr Biol; 2020 Sep; 30(17):3330-3341.e7. PubMed ID: 32619486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Draft genome sequence of the Antarctic green alga
    Zhang X; Cvetkovska M; Morgan-Kiss R; Hüner NPA; Smith DR
    iScience; 2021 Feb; 24(2):102084. PubMed ID: 33644715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple ice-binding proteins of probable prokaryotic origin in an Antarctic lake alga, Chlamydomonas sp. ICE-MDV (Chlorophyceae).
    Raymond JA; Morgan-Kiss R
    J Phycol; 2017 Aug; 53(4):848-854. PubMed ID: 28543018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature stress in psychrophilic green microalgae: Minireview.
    Cvetkovska M; Vakulenko G; Smith DR; Zhang X; Hüner NPA
    Physiol Plant; 2022 Nov; 174(6):e13811. PubMed ID: 36309822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Antarctic sea ice alga Chlamydomonas sp. ICE-L provides insights into adaptive patterns of chloroplast evolution.
    Zhang Z; An M; Miao J; Gu Z; Liu C; Zhong B
    BMC Plant Biol; 2018 Apr; 18(1):53. PubMed ID: 29614974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Antarctic Chlamydomonas raudensis: an emerging model for cold adaptation of photosynthesis.
    Dolhi JM; Maxwell DP; Morgan-Kiss RM
    Extremophiles; 2013 Sep; 17(5):711-22. PubMed ID: 23903324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separate origins of ice-binding proteins in antarctic chlamydomonas species.
    Raymond JA; Morgan-Kiss R
    PLoS One; 2013; 8(3):e59186. PubMed ID: 23536869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eyespot-dependent determination of the phototactic sign in Chlamydomonas reinhardtii.
    Ueki N; Ide T; Mochiji S; Kobayashi Y; Tokutsu R; Ohnishi N; Yamaguchi K; Shigenobu S; Tanaka K; Minagawa J; Hisabori T; Hirono M; Wakabayashi K
    Proc Natl Acad Sci U S A; 2016 May; 113(19):5299-304. PubMed ID: 27122315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Channelrhodopsin-1 Phosphorylation Changes with Phototactic Behavior and Responds to Physiological Stimuli in
    Böhm M; Boness D; Fantisch E; Erhard H; Frauenholz J; Kowalzyk Z; Marcinkowski N; Kateriya S; Hegemann P; Kreimer G
    Plant Cell; 2019 Apr; 31(4):886-910. PubMed ID: 30862615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A constitutive stress response is a result of low temperature growth in the Antarctic green alga Chlamydomonas sp. UWO241.
    Cvetkovska M; Zhang X; Vakulenko G; Benzaquen S; Szyszka-Mroz B; Malczewski N; Smith DR; Hüner NPA
    Plant Cell Environ; 2022 Jan; 45(1):156-177. PubMed ID: 34664276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acclimation of Antarctic Chlamydomonas to the sea-ice environment: a transcriptomic analysis.
    Liu C; Wang X; Wang X; Sun C
    Extremophiles; 2016 Jul; 20(4):437-50. PubMed ID: 27161450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High salt-induced PSI-supercomplex is associated with high CEF and attenuation of state transitions.
    Kalra I; Wang X; Zhang R; Morgan-Kiss R
    Photosynth Res; 2023 Sep; 157(2-3):65-84. PubMed ID: 37347385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated study of photochemical function and expression of a key photochemical gene (psbA) in photosynthetic communities of Lake Bonney (McMurdo Dry Valleys, Antarctica).
    Kong W; Li W; Romancova I; Prášil O; Morgan-Kiss RM
    FEMS Microbiol Ecol; 2014 Aug; 89(2):293-302. PubMed ID: 24499459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salinity affects the photoacclimation of Chlamydomonas raudensis Ettl UWO241.
    Takizawa K; Takahashi S; Hüner NP; Minagawa J
    Photosynth Res; 2009 Mar; 99(3):195-203. PubMed ID: 19137412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic electron flow (CEF) and ascorbate pathway activity provide constitutive photoprotection for the photopsychrophile, Chlamydomonas sp. UWO 241 (renamed Chlamydomonas priscuii).
    Stahl-Rommel S; Kalra I; D'Silva S; Hahn MM; Popson D; Cvetkovska M; Morgan-Kiss RM
    Photosynth Res; 2022 Mar; 151(3):235-250. PubMed ID: 34609708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.