BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38126952)

  • 1. Template Assisted Formation of 32 and 34π Octaphyrins Embedded with Dithienopyrrole Cores: A New Scaffold to Unravel Proton Coupled Redox Switching and (Anti)Aromaticity.
    Edwin A; Krishnan G; Jayaprakash A; Pathiyil Anilkumar S; Sabapathi G
    Chemistry; 2024 Feb; 30(11):e202303326. PubMed ID: 38126952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational change from a twisted figure-eight to an open-extended structure in doubly fused 36π core-modified octaphyrins triggered by protonation: implication on photodynamics and aromaticity.
    Karthik G; Lim JM; Srinivasan A; Suresh CH; Kim D; Chandrashekar TK
    Chemistry; 2013 Dec; 19(50):17011-20. PubMed ID: 24307363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. meso-substituted aromatic 34pi core-modified octaphyrins: syntheses, characterization and anion binding properties.
    Anand VG; Venkatraman S; Rath H; Chandrashekar TK; Teng W; Ruhlandt-Senge K
    Chemistry; 2003 May; 9(10):2282-90. PubMed ID: 12772303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton-Coupled Redox Switching in an Annulated π-Extended Core-Modified Octaphyrin.
    Sarma T; Kim G; Sen S; Cha WY; Duan Z; Moore MD; Lynch VM; Zhang Z; Kim D; Sessler JL
    J Am Chem Soc; 2018 Sep; 140(38):12111-12119. PubMed ID: 30180553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protonated [4n]pi and [4n+2]pi octaphyrins choose their Möbius/Hückel aromatic topology.
    Lim JM; Shin JY; Tanaka Y; Saito S; Osuka A; Kim D
    J Am Chem Soc; 2010 Mar; 132(9):3105-14. PubMed ID: 20148589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Planar Antiaromatic Core-Modified 24π Hexaphyrin(1.0.1.0.1.0) and 32π Octaphyrin(1.0.1.0.1.0.1.0) Bearing Alternate Hybrid Diheterole Units.
    Ajay J; Shirisha S; Ishida M; Ito K; Mori S; Furuta H; Gokulnath S
    Chemistry; 2019 Feb; 25(11):2859-2867. PubMed ID: 30589136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural diversity in expanded porphyrins.
    Misra R; Chandrashekar TK
    Acc Chem Res; 2008 Feb; 41(2):265-79. PubMed ID: 18281947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two non-identical twins in one unit cell: characterization of 34π aromatic core-modified octaphyrins, their structural isomers and anion bound complexes.
    Ghosh A; Dash S; Srinivasan A; Suresh CH; Chandrashekar TK
    Chem Sci; 2019 Jun; 10(23):5911-5919. PubMed ID: 31360396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenylene-Bridged Core-Modified Planar Aromatic Octaphyrin: Aromaticity, Photophysical and Anion Receptor Properties.
    Karthik G; Cha WY; Ghosh A; Kim T; Srinivasan A; Kim D; Chandrashekar TK
    Chem Asian J; 2016 May; 11(9):1447-53. PubMed ID: 26957207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "To Twist or Not to Twist": Figure-of-Eight and Planar Structures of Octaphyrins.
    Shivran N; Gadekar SC; Anand VG
    Chem Asian J; 2017 Jan; 12(1):6-20. PubMed ID: 27893187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Meso-substituted [34]octaphyrin(1.1.1.0.1.1.1.0) and corrole formation in reactions of a dipyrromethanedicarbinol with 2,2'-bipyrrole.
    Geier GR; Grindrod SC
    J Org Chem; 2004 Sep; 69(19):6404-12. PubMed ID: 15357601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protonation-coupled redox reactions in planar antiaromatic meso-pentafluorophenyl-substituted o-phenylene-bridged annulated rosarins.
    Ishida M; Kim SJ; Preihs C; Ohkubo K; Lim JM; Lee BS; Park JS; Lynch VM; Roznyatovskiy VV; Sarma T; Panda PK; Lee CH; Fukuzumi S; Kim D; Sessler JL
    Nat Chem; 2013 Jan; 5(1):15-20. PubMed ID: 23247172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of (bis)Silicon Complexes of [38], [37], and [36]Octaphyrins: Aromaticity Switch and Stable Radical Cation.
    Ishida SI; Kim J; Shimizu D; Kim D; Osuka A
    Angew Chem Int Ed Engl; 2018 May; 57(20):5876-5880. PubMed ID: 29532583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of A2B6-type [36]octaphyrins: copper(II)-metalation-induced fragmentation reactions to porphyrins and N-fusion reactions of meso-(3-thienyl) substituents.
    Mori H; Aratani N; Osuka A
    Chem Asian J; 2012 Jun; 7(6):1340-6. PubMed ID: 22271635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antiaromatic hexaphyrins and octaphyrins stabilized by the hydrogen-bonding interactions of meso-imidazolyl groups.
    Mori H; Sung YM; Lee BS; Kim D; Osuka A
    Angew Chem Int Ed Engl; 2012 Dec; 51(50):12459-63. PubMed ID: 23124801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tetrabromo[36]octaphyrin: A Promising Precursor of Directly Fused Porphyrin(2.1.1.1) Dimer and meso-α Fused N-Confused Porphyrin Dimer.
    Nakai A; Kim J; Tanaka T; Kim D; Osuka A
    Angew Chem Int Ed Engl; 2021 Dec; 60(51):26540-26544. PubMed ID: 34609777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trapping of Stable [4n+1] π-Electron Species from Peripherally Substituted, Conformationally Rigid, Antiaromatic Hexaphyrins.
    Firmansyah D; Hong SJ; Dutta R; He Q; Bae J; Jo H; Kim H; Ok KM; Lynch VM; Byon HR; Sessler JL; Lee CH
    Chemistry; 2019 Mar; 25(14):3525-3531. PubMed ID: 30684359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A wide-range of redox states of core-modified expanded porphyrinoids.
    Ambhore MD; Basavarajappa A; Anand VG
    Chem Commun (Camb); 2019 Jun; 55(47):6763-6766. PubMed ID: 31119220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards meso-meso-linked porphyrin arrays and meso-aryl expanded porphyrins.
    Osuka A
    Chem Rec; 2015 Feb; 15(1):143-59. PubMed ID: 25316151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the molecular switching properties of octaphyrins.
    Woller T; Contreras-García J; Geerlings P; De Proft F; Alonso M
    Phys Chem Chem Phys; 2016 Apr; 18(17):11885-900. PubMed ID: 26924378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.