These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 38127073)
1. Automatic detection, segmentation, and classification of primary bone tumors and bone infections using an ensemble multi-task deep learning framework on multi-parametric MRIs: a multi-center study. Ye Q; Yang H; Lin B; Wang M; Song L; Xie Z; Lu Z; Feng Q; Zhao Y Eur Radiol; 2024 Jul; 34(7):4287-4299. PubMed ID: 38127073 [TBL] [Abstract][Full Text] [Related]
2. A radiograph-based deep learning model improves radiologists' performance for classification of histological types of primary bone tumors: A multicenter study. Xie Z; Zhao H; Song L; Ye Q; Zhong L; Li S; Zhang R; Wang M; Chen X; Lu Z; Yang W; Zhao Y Eur J Radiol; 2024 Jul; 176():111496. PubMed ID: 38733705 [TBL] [Abstract][Full Text] [Related]
3. Multitask Deep Learning for Segmentation and Classification of Primary Bone Tumors on Radiographs. von Schacky CE; Wilhelm NJ; Schäfer VS; Leonhardt Y; Gassert FG; Foreman SC; Gassert FT; Jung M; Jungmann PM; Russe MF; Mogler C; Knebel C; von Eisenhart-Rothe R; Makowski MR; Woertler K; Burgkart R; Gersing AS Radiology; 2021 Nov; 301(2):398-406. PubMed ID: 34491126 [TBL] [Abstract][Full Text] [Related]
4. A deep learning-machine learning fusion approach for the classification of benign, malignant, and intermediate bone tumors. Liu R; Pan D; Xu Y; Zeng H; He Z; Lin J; Zeng W; Wu Z; Luo Z; Qin G; Chen W Eur Radiol; 2022 Feb; 32(2):1371-1383. PubMed ID: 34432121 [TBL] [Abstract][Full Text] [Related]
5. Primary bone tumor detection and classification in full-field bone radiographs via YOLO deep learning model. Li J; Li S; Li X; Miao S; Dong C; Gao C; Liu X; Hao D; Xu W; Huang M; Cui J Eur Radiol; 2023 Jun; 33(6):4237-4248. PubMed ID: 36449060 [TBL] [Abstract][Full Text] [Related]
6. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet. Bien N; Rajpurkar P; Ball RL; Irvin J; Park A; Jones E; Bereket M; Patel BN; Yeom KW; Shpanskaya K; Halabi S; Zucker E; Fanton G; Amanatullah DF; Beaulieu CF; Riley GM; Stewart RJ; Blankenberg FG; Larson DB; Jones RH; Langlotz CP; Ng AY; Lungren MP PLoS Med; 2018 Nov; 15(11):e1002699. PubMed ID: 30481176 [TBL] [Abstract][Full Text] [Related]
7. Deep Learning-Based Detection and Classification of Bone Lesions on Staging Computed Tomography in Prostate Cancer: A Development Study. Belue MJ; Harmon SA; Yang D; An JY; Gaur S; Law YM; Turkbey E; Xu Z; Tetreault J; Lay NS; Yilmaz EC; Phelps TE; Simon B; Lindenberg L; Mena E; Pinto PA; Bagci U; Wood BJ; Citrin DE; Dahut WL; Madan RA; Gulley JL; Xu D; Choyke PL; Turkbey B Acad Radiol; 2024 Jun; 31(6):2424-2433. PubMed ID: 38262813 [TBL] [Abstract][Full Text] [Related]
8. Benign vs malignant vertebral compression fractures with MRI: a comparison between automatic deep learning network and radiologist's assessment. Liu B; Jin Y; Feng S; Yu H; Zhang Y; Li Y Eur Radiol; 2023 Jul; 33(7):5060-5068. PubMed ID: 37162531 [TBL] [Abstract][Full Text] [Related]
9. A deep learning model to enhance the classification of primary bone tumors based on incomplete multimodal images in X-ray, CT, and MRI. Song L; Li C; Tan L; Wang M; Chen X; Ye Q; Li S; Zhang R; Zeng Q; Xie Z; Yang W; Zhao Y Cancer Imaging; 2024 Oct; 24(1):135. PubMed ID: 39390604 [TBL] [Abstract][Full Text] [Related]
10. Deep learning for the automatic detection and segmentation of parotid gland tumors on MRI. Zhang R; Wong LM; So TY; Cai Z; Deng Q; Tsang YM; Ai QYH; King AD Oral Oncol; 2024 May; 152():106796. PubMed ID: 38615586 [TBL] [Abstract][Full Text] [Related]
11. Integrating intratumoral and peritumoral radiomics with deep transfer learning for DCE-MRI breast lesion differentiation: A multicenter study comparing performance with radiologists. Yu T; Yu R; Liu M; Wang X; Zhang J; Zheng Y; Lv F Eur J Radiol; 2024 Aug; 177():111556. PubMed ID: 38875748 [TBL] [Abstract][Full Text] [Related]
12. Advancing musculoskeletal tumor diagnosis: Automated segmentation and predictive classification using deep learning and radiomics. Wang S; Sun M; Sun J; Wang Q; Wang G; Wang X; Meng X; Wang Z; Yu H Comput Biol Med; 2024 Jun; 175():108502. PubMed ID: 38678943 [TBL] [Abstract][Full Text] [Related]
13. Deep Learning for Classification of Bone Lesions on Routine MRI. Eweje FR; Bao B; Wu J; Dalal D; Liao WH; He Y; Luo Y; Lu S; Zhang P; Peng X; Sebro R; Bai HX; States L EBioMedicine; 2021 Jun; 68():103402. PubMed ID: 34098339 [TBL] [Abstract][Full Text] [Related]
14. Deep learning-based classification of primary bone tumors on radiographs: A preliminary study. He Y; Pan I; Bao B; Halsey K; Chang M; Liu H; Peng S; Sebro RA; Guan J; Yi T; Delworth AT; Eweje F; States LJ; Zhang PJ; Zhang Z; Wu J; Peng X; Bai HX EBioMedicine; 2020 Dec; 62():103121. PubMed ID: 33232868 [TBL] [Abstract][Full Text] [Related]
15. Deep learning enables automatic detection and segmentation of brain metastases on multisequence MRI. Grøvik E; Yi D; Iv M; Tong E; Rubin D; Zaharchuk G J Magn Reson Imaging; 2020 Jan; 51(1):175-182. PubMed ID: 31050074 [TBL] [Abstract][Full Text] [Related]
16. Deep Learning Model for Automated Detection and Classification of Central Canal, Lateral Recess, and Neural Foraminal Stenosis at Lumbar Spine MRI. Hallinan JTPD; Zhu L; Yang K; Makmur A; Algazwi DAR; Thian YL; Lau S; Choo YS; Eide SE; Yap QV; Chan YH; Tan JH; Kumar N; Ooi BC; Yoshioka H; Quek ST Radiology; 2021 Jul; 300(1):130-138. PubMed ID: 33973835 [TBL] [Abstract][Full Text] [Related]
17. A deep learning framework for intracranial aneurysms automatic segmentation and detection on magnetic resonance T1 images. Qu J; Niu H; Li Y; Chen T; Peng F; Xia J; He X; Xu B; Chen X; Li R; Liu A; Zhang X; Li C Eur Radiol; 2024 May; 34(5):2838-2848. PubMed ID: 37843574 [TBL] [Abstract][Full Text] [Related]
18. Automated image quality evaluation of structural brain MRI using an ensemble of deep learning networks. Sujit SJ; Coronado I; Kamali A; Narayana PA; Gabr RE J Magn Reson Imaging; 2019 Oct; 50(4):1260-1267. PubMed ID: 30811739 [TBL] [Abstract][Full Text] [Related]
19. Hybrid U-Net-based deep learning model for volume segmentation of lung nodules in CT images. Wang Y; Zhou C; Chan HP; Hadjiiski LM; Chughtai A; Kazerooni EA Med Phys; 2022 Nov; 49(11):7287-7302. PubMed ID: 35717560 [TBL] [Abstract][Full Text] [Related]
20. Fully automated segmentation and volumetric measurement of ocular adnexal lymphoma by deep learning-based self-configuring nnU-net on multi-sequence MRI: a multi-center study. Wang G; Yang B; Qu X; Guo J; Luo Y; Xu X; Wu F; Fan X; Hou Y; Tian S; Huang S; Xian J Neuroradiology; 2024 Oct; 66(10):1781-1791. PubMed ID: 39014270 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]