These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 38127330)

  • 1. Pediatric evaluations for deep learning CT denoising.
    Nelson BJ; Kc P; Badal A; Jiang L; Masters SC; Zeng R
    Med Phys; 2024 Feb; 51(2):978-990. PubMed ID: 38127330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness.
    Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ
    Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Image quality evaluation in deep-learning-based CT noise reduction using virtual imaging trial methods: Contrast-dependent spatial resolution.
    Zhou Z; Gong H; Hsieh S; McCollough CH; Yu L
    Med Phys; 2024 Aug; 51(8):5399-5413. PubMed ID: 38555876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A performance comparison of convolutional neural network-based image denoising methods: The effect of loss functions on low-dose CT images.
    Kim B; Han M; Shim H; Baek J
    Med Phys; 2019 Sep; 46(9):3906-3923. PubMed ID: 31306488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adapting low-dose CT denoisers for texture preservation using zero-shot local noise-level matching.
    Ko Y; Song S; Baek J; Shim H
    Med Phys; 2024 Jun; 51(6):4181-4200. PubMed ID: 38478305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patient-derived PixelPrint phantoms for evaluating clinical imaging performance of a deep learning CT reconstruction algorithm.
    Im JY; Halliburton SS; Mei K; Perkins AE; Wong E; Roshkovan L; Sandvold OF; Liu LP; Gang GJ; Noël PB
    Phys Med Biol; 2024 May; 69(11):. PubMed ID: 38604190
    [No Abstract]   [Full Text] [Related]  

  • 7. Dose reduction and image enhancement in micro-CT using deep learning.
    Muller FM; Maebe J; Vanhove C; Vandenberghe S
    Med Phys; 2023 Sep; 50(9):5643-5656. PubMed ID: 36994779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iterative image-domain decomposition for dual-energy CT.
    Niu T; Dong X; Petrongolo M; Zhu L
    Med Phys; 2014 Apr; 41(4):041901. PubMed ID: 24694132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Domain-adaptive denoising network for low-dose CT via noise estimation and transfer learning.
    Wang J; Tang Y; Wu Z; Tsui BMW; Chen W; Yang X; Zheng J; Li M
    Med Phys; 2023 Jan; 50(1):74-88. PubMed ID: 36018732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Image denoising by transfer learning of generative adversarial network for dental CT.
    Hegazy MAA; Cho MH; Lee SY
    Biomed Phys Eng Express; 2020 Sep; 6(5):055024. PubMed ID: 33444255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning-based low-dose CT simulator for non-linear reconstruction methods.
    Tunissen SAM; Moriakov N; Mikerov M; Smit EJ; Sechopoulos I; Teuwen J
    Med Phys; 2024 Sep; 51(9):6046-6060. PubMed ID: 38843540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning low-dose CT degradation from unpaired data with flow-based model.
    Liu X; Liang X; Deng L; Tan S; Xie Y
    Med Phys; 2022 Dec; 49(12):7516-7530. PubMed ID: 35880375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study based on image quality and clinical task performance for CT reconstruction algorithms in radiotherapy.
    Li H; Dolly S; Chen HC; Anastasio MA; Low DA; Li HH; Michalski JM; Thorstad WL; Gay H; Mutic S
    J Appl Clin Med Phys; 2016 Jul; 17(4):377-390. PubMed ID: 27455472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An unsupervised two-step training framework for low-dose computed tomography denoising.
    Kim W; Lee J; Choi JH
    Med Phys; 2024 Feb; 51(2):1127-1144. PubMed ID: 37432026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-Dose Abdominal CT Using a Deep Learning-Based Denoising Algorithm: A Comparison with CT Reconstructed with Filtered Back Projection or Iterative Reconstruction Algorithm.
    Shin YJ; Chang W; Ye JC; Kang E; Oh DY; Lee YJ; Park JH; Kim YH
    Korean J Radiol; 2020 Mar; 21(3):356-364. PubMed ID: 32090528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unpaired low-dose computed tomography image denoising using a progressive cyclical convolutional neural network.
    Li Q; Li R; Li S; Wang T; Cheng Y; Zhang S; Wu W; Zhao J; Qiang Y; Wang L
    Med Phys; 2024 Feb; 51(2):1289-1312. PubMed ID: 36841936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive nonlocal means filtering based on local noise level for CT denoising.
    Li Z; Yu L; Trzasko JD; Lake DS; Blezek DJ; Fletcher JG; McCollough CH; Manduca A
    Med Phys; 2014 Jan; 41(1):011908. PubMed ID: 24387516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of CT noise reduction performances with deep learning-based, conventional, and combined denoising algorithms.
    Balogh ZA; Janos Kis B
    Med Eng Phys; 2022 Nov; 109():103897. PubMed ID: 36371081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning versus iterative reconstruction on image quality and dose reduction in abdominal CT: a live animal study.
    Zhang JZ; Ganesh H; Raslau FD; Nair R; Escott E; Wang C; Wang G; Zhang J
    Phys Med Biol; 2022 Jul; 67(14):. PubMed ID: 35709707
    [No Abstract]   [Full Text] [Related]  

  • 20. A deep learning- and partial least square regression-based model observer for a low-contrast lesion detection task in CT.
    Gong H; Yu L; Leng S; Dilger SK; Ren L; Zhou W; Fletcher JG; McCollough CH
    Med Phys; 2019 May; 46(5):2052-2063. PubMed ID: 30889282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.