These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38127366)

  • 1. Polarity and orbital driven reduction in contact resistance in organic devices with functionalized electrodes.
    Patrikar K; Mondal A
    J Chem Phys; 2023 Sep; 159(12):. PubMed ID: 38127366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conjugated Polymer Zwitterions: Efficient Interlayer Materials in Organic Electronics.
    Liu Y; Duzhko VV; Page ZA; Emrick T; Russell TP
    Acc Chem Res; 2016 Nov; 49(11):2478-2488. PubMed ID: 27783502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electroactive Ionenes: Efficient Interlayer Materials in Organic Photovoltaics.
    Liu Y; Russell TP
    Acc Chem Res; 2022 Apr; 55(8):1097-1108. PubMed ID: 35188380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interlayers Self-Generated by Additive-Metal Interactions in Organic Electronic Devices.
    Vinokur J; Deckman I; Sarkar T; Nouzman L; Shamieh B; Frey GL
    Adv Mater; 2018 Oct; 30(41):e1706803. PubMed ID: 29989224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of Electrode Interface with Fullerene-Based Self-Assembled Monolayer for High-Performance Organic Optoelectronic Devices.
    Sin DH; Kim SH; Lee J; Lee H
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interplay between Interfacial Structures and Device Performance in Organic Solar Cells: A Case Study with the Low Work Function Metal, Calcium.
    Ju H; Knesting KM; Zhang W; Pan X; Wang CH; Yang YW; Ginger DS; Zhu J
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2125-31. PubMed ID: 26716763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the Microscopic Origin of the Contact Resistance at the Polymer-Electrode Interface.
    Patrikar K; Rao VR; Kabra D; Mondal A
    ACS Appl Mater Interfaces; 2023 Oct; 15(42):49427-49435. PubMed ID: 37830921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On practical charge injection at the metal/organic semiconductor interface.
    Kumatani A; Li Y; Darmawan P; Minari T; Tsukagoshi K
    Sci Rep; 2013; 3():1026. PubMed ID: 23293741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid Cathode Interlayer Enables 17.4% Efficiency Binary Organic Solar Cells.
    Song H; Hu D; Lv J; Lu S; Haiyan C; Kan Z
    Adv Sci (Weinh); 2022 Mar; 9(8):e2105575. PubMed ID: 35040581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecule-electrode interfaces in molecular electronic devices.
    Jia C; Guo X
    Chem Soc Rev; 2013 Jul; 42(13):5642-60. PubMed ID: 23571285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double-Dipole Induced by Incorporating Nitrogen-Bromine Hybrid Cathode Interlayers Leads to Suppressed Current Leakage and Enhanced Charge Extraction in Non-Fullerene Organic Solar Cells.
    Zheng Y; Zhao J; Liang H; Zhao Z; Kan Z
    Adv Sci (Weinh); 2023 Sep; 10(26):e2302460. PubMed ID: 37401166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Perylene Diimide Ink for Interlayer Formation in Air-Processed Conventional Organic Photovoltaic Devices.
    Farahat ME; Anderson MA; Martell M; Ratcliff EL; Welch GC
    ACS Appl Mater Interfaces; 2022 Sep; 14(38):43558-43567. PubMed ID: 36099398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailoring Functional Interlayers in Organic Field-Effect Transistor Biosensors.
    Magliulo M; Manoli K; Macchia E; Palazzo G; Torsi L
    Adv Mater; 2015 Dec; 27(46):7528-51. PubMed ID: 25429859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical Composition of Additives That Spontaneously Form Cathode Interlayers in OPVs.
    Deckman I; Obuchovsky S; Moshonov M; Frey GL
    Langmuir; 2015 Jun; 31(24):6721-8. PubMed ID: 25996286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of Additive Migration to Form Cathodic Interlayers in Organic Solar Cells.
    Vinokur J; Obuchovsky S; Deckman I; Shoham L; Mates T; Chabinyc ML; Frey GL
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29889-29900. PubMed ID: 28800213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge Transfer and Orbital Level Alignment at Inorganic/Organic Interfaces: The Role of Dielectric Interlayers.
    Hollerer M; Lüftner D; Hurdax P; Ules T; Soubatch S; Tautz FS; Koller G; Puschnig P; Sterrer M; Ramsey MG
    ACS Nano; 2017 Jun; 11(6):6252-6260. PubMed ID: 28541656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of ZnO Interlayers for Organic Solar Cells: Correlation of Electrochemical Properties with Thin-Film Morphology and Device Performance.
    Ou KL; Ehamparam R; MacDonald G; Stubhan T; Wu X; Shallcross RC; Richards R; Brabec CJ; Saavedra SS; Armstrong NR
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19787-98. PubMed ID: 27362429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interface engineering: an effective approach toward high-performance organic field-effect transistors.
    Di CA; Liu Y; Yu G; Zhu D
    Acc Chem Res; 2009 Oct; 42(10):1573-83. PubMed ID: 19645474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric Chemical Functionalization of Top-Contact Electrodes: Tuning the Charge Injection for High-Performance MoS
    Han B; Zhao Y; Ma C; Wang C; Tian X; Wang Y; Hu W; Samorì P
    Adv Mater; 2022 Mar; 34(12):e2109445. PubMed ID: 35061928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative femtosecond charge transfer dynamics at organic/electrode interfaces studied by core-hole clock spectroscopy.
    Cao L; Gao XY; Wee AT; Qi DC
    Adv Mater; 2014 Dec; 26(46):7880-8. PubMed ID: 24692009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.