BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38127382)

  • 1. Fragment-based models for dissociation of strong acids in water: Electrostatic embedding minimizes the dependence on the fragmentation schemes.
    Tripathy V; Raghavachari K
    J Chem Phys; 2023 Sep; 159(12):. PubMed ID: 38127382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrostatically embedded molecules-in-molecules approach and its application to molecular clusters.
    Tripathy V; Saha A; Raghavachari K
    J Comput Chem; 2021 Apr; 42(10):719-734. PubMed ID: 33586802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of Fragmentation Strategies for Large Proteins Using the Multilayer Molecules-in-Molecules Approach.
    Thapa B; Beckett D; Jovan Jose KV; Raghavachari K
    J Chem Theory Comput; 2018 Mar; 14(3):1383-1394. PubMed ID: 29450992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fragment-Based Approaches for Supramolecular Interaction Energies: Applications to Foldamers and Their Complexes with Anions.
    Debnath S; Sengupta A; Jose KVJ; Raghavachari K
    J Chem Theory Comput; 2018 Dec; 14(12):6226-6239. PubMed ID: 30484639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling Constants, High Spin, and Broken Symmetry States of Organic Radicals: an Assessment of the Molecules-in-Molecules Fragmentation-Based Method.
    Sadhukhan T; Beckett D; Thapa B; Raghavachari K
    J Chem Theory Comput; 2019 Nov; 15(11):5998-6009. PubMed ID: 31625737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the Errors in the Electrostatically Embedded Many-Body Expansion of the Energy and the Correlation Energy for Zn and Cd Coordination Complexes with Five and Six Ligands and Use of the Analysis to Develop a Generally Successful Fragmentation Strategy.
    Kurbanov EK; Leverentz HR; Truhlar DG; Amin EA
    J Chem Theory Comput; 2013 Jun; 9(6):2617-2628. PubMed ID: 23814509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate and Cost-Effective NMR Chemical Shift Predictions for Nucleic Acids Using a Molecules-in-Molecules Fragmentation-Based Method.
    Chandy SK; Raghavachari K
    J Chem Theory Comput; 2023 Jan; ():. PubMed ID: 36630261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatically Embedded Many-Body Approximation for Systems of Water, Ammonia, and Sulfuric Acid and the Dependence of Its Performance on Embedding Charges.
    Leverentz HR; Truhlar DG
    J Chem Theory Comput; 2009 Jun; 5(6):1573-84. PubMed ID: 26609850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum mechanical fragment methods based on partitioning atoms or partitioning coordinates.
    Wang B; Yang KR; Xu X; Isegawa M; Leverentz HR; Truhlar DG
    Acc Chem Res; 2014 Sep; 47(9):2731-8. PubMed ID: 24841937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fragment Quantum Mechanical Method for Large-Sized Ion-Water Clusters.
    Liu J; Qi LW; Zhang JZH; He X
    J Chem Theory Comput; 2017 May; 13(5):2021-2034. PubMed ID: 28379695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Energy Gradients and Infrared Vibrational Spectra through Molecules-in-Molecules Fragment-Based Approach.
    Jose KV; Raghavachari K
    J Chem Theory Comput; 2015 Mar; 11(3):950-61. PubMed ID: 26579749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrostatically Embedded Many-Body Expansion for Large Systems, with Applications to Water Clusters.
    Dahlke EE; Truhlar DG
    J Chem Theory Comput; 2007 Jan; 3(1):46-53. PubMed ID: 26627150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring Reaction Energy Profiles Using the Molecules-in-Molecules Fragmentation-Based Approach.
    Gupta AK; Thapa B; Raghavachari K
    J Chem Theory Comput; 2019 Jul; 15(7):3991-4002. PubMed ID: 31181886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatically Embedded Molecular Tailoring Approach and Validation for Peptides.
    Isegawa M; Wang B; Truhlar DG
    J Chem Theory Comput; 2013 Mar; 9(3):1381-93. PubMed ID: 26587600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extension of the Effective Fragment Potential Method to Macromolecules.
    Gurunathan PK; Acharya A; Ghosh D; Kosenkov D; Kaliman I; Shao Y; Krylov AI; Slipchenko LV
    J Phys Chem B; 2016 Jul; 120(27):6562-74. PubMed ID: 27314461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Different Fragmentation Strategies on a Variety of Large Peptides: Implementation of a Low Level of Theory in Fragment-Based Methods Can Be a Crucial Factor.
    Saha A; Raghavachari K
    J Chem Theory Comput; 2015 May; 11(5):2012-23. PubMed ID: 26574406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Are fragment-based quantum chemistry methods applicable to medium-sized water clusters?
    Yuan D; Shen X; Li W; Li S
    Phys Chem Chem Phys; 2016 Jun; 18(24):16491-500. PubMed ID: 27263629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecules-in-Molecules: An Extrapolated Fragment-Based Approach for Accurate Calculations on Large Molecules and Materials.
    Mayhall NJ; Raghavachari K
    J Chem Theory Comput; 2011 May; 7(5):1336-43. PubMed ID: 26610128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerated Quantum Mechanics/Molecular Mechanics Simulations via Neural Networks Incorporated with Mechanical Embedding Scheme.
    Zhou B; Zhou Y; Xie D
    J Chem Theory Comput; 2023 Feb; 19(4):1157-1169. PubMed ID: 36724190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.