These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38127396)

  • 1. How to train a neural network potential.
    Tokita AM; Behler J
    J Chem Phys; 2023 Sep; 159(12):. PubMed ID: 38127396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning transferable atomic forces for large systems from underconverged molecular fragments.
    Herbold M; Behler J
    Phys Chem Chem Phys; 2023 May; 25(18):12979-12989. PubMed ID: 37165873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. General-Purpose Machine Learning Potentials Capturing Nonlocal Charge Transfer.
    Ko TW; Finkler JA; Goedecker S; Behler J
    Acc Chem Res; 2021 Feb; 54(4):808-817. PubMed ID: 33513012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Hessian-based assessment of atomic forces for training machine learning interatomic potentials.
    Herbold M; Behler J
    J Chem Phys; 2022 Mar; 156(11):114106. PubMed ID: 35317596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perspective: Atomistic simulations of water and aqueous systems with machine learning potentials.
    Omranpour A; Montero De Hijes P; Behler J; Dellago C
    J Chem Phys; 2024 May; 160(17):. PubMed ID: 38748006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural Network Potentials: A Concise Overview of Methods.
    Kocer E; Ko TW; Behler J
    Annu Rev Phys Chem; 2022 Apr; 73():163-186. PubMed ID: 34982580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First Principles Neural Network Potentials for Reactive Simulations of Large Molecular and Condensed Systems.
    Behler J
    Angew Chem Int Ed Engl; 2017 Oct; 56(42):12828-12840. PubMed ID: 28520235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Training machine learning potentials for reactive systems: A Colab tutorial on basic models.
    Pan X; Snyder R; Wang JN; Lander C; Wickizer C; Van R; Chesney A; Xue Y; Mao Y; Mei Y; Pu J; Shao Y
    J Comput Chem; 2024 Apr; 45(10):638-647. PubMed ID: 38082539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tell Machine Learning Potentials What They Are Needed For: Simulation-Oriented Training Exemplified for Glycine.
    Ge F; Wang R; Qu C; Zheng P; Nandi A; Conte R; Houston PL; Bowman JM; Dral PO
    J Phys Chem Lett; 2024 Apr; 15(16):4451-4460. PubMed ID: 38626460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perspective: Machine learning potentials for atomistic simulations.
    Behler J
    J Chem Phys; 2016 Nov; 145(17):170901. PubMed ID: 27825224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DFT-Quality Adsorption Simulations in Metal-Organic Frameworks Enabled by Machine Learning Potentials.
    Goeminne R; Vanduyfhuys L; Van Speybroeck V; Verstraelen T
    J Chem Theory Comput; 2023 Sep; 19(18):6313-6325. PubMed ID: 37642314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate Fourth-Generation Machine Learning Potentials by Electrostatic Embedding.
    Ko TW; Finkler JA; Goedecker S; Behler J
    J Chem Theory Comput; 2023 Jun; 19(12):3567-3579. PubMed ID: 37289440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning of Reactive Potentials.
    Yang Y; Zhang S; Ranasinghe KD; Isayev O; Roitberg AE
    Annu Rev Phys Chem; 2024 Jun; 75(1):371-395. PubMed ID: 38941524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-Scale Atomic Simulation via Machine Learning Potentials Constructed by Global Potential Energy Surface Exploration.
    Kang PL; Shang C; Liu ZP
    Acc Chem Res; 2020 Oct; 53(10):2119-2129. PubMed ID: 32940999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-dimensional neural network potentials for accurate vibrational frequencies: the formic acid dimer benchmark.
    Shanavas Rasheeda D; Martín Santa Daría A; Schröder B; Mátyus E; Behler J
    Phys Chem Chem Phys; 2022 Dec; 24(48):29381-29392. PubMed ID: 36459127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Operando Modeling of Zeolite-Catalyzed Reactions Using First-Principles Molecular Dynamics Simulations.
    Van Speybroeck V; Bocus M; Cnudde P; Vanduyfhuys L
    ACS Catal; 2023 Sep; 13(17):11455-11493. PubMed ID: 37671178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations.
    Fan Z; Wang Y; Ying P; Song K; Wang J; Wang Y; Zeng Z; Xu K; Lindgren E; Rahm JM; Gabourie AJ; Liu J; Dong H; Wu J; Chen Y; Zhong Z; Sun J; Erhart P; Su Y; Ala-Nissila T
    J Chem Phys; 2022 Sep; 157(11):114801. PubMed ID: 36137808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into lithium manganese oxide-water interfaces using machine learning potentials.
    Eckhoff M; Behler J
    J Chem Phys; 2021 Dec; 155(24):244703. PubMed ID: 34972388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Four Generations of High-Dimensional Neural Network Potentials.
    Behler J
    Chem Rev; 2021 Aug; 121(16):10037-10072. PubMed ID: 33779150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.