These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 381274)

  • 41. Effect of antifungal agents on the binding of Candida albicans to immobilized amino acids and bovine serum albumin.
    Islam K; Hawser SP
    J Antimicrob Chemother; 1999 Apr; 43(4):583-7. PubMed ID: 10350392
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Suggested mechanisms for the antimycotic activity of the polyene antibiotics and the N-substituted imidazoles.
    Thomas AH
    J Antimicrob Chemother; 1986 Mar; 17(3):269-79. PubMed ID: 3516967
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The cellular and molecular mechanism of glutaraldehyde-didecyldimethylammonium bromide as a disinfectant against Candida albicans.
    Lin W; Yuan D; Deng Z; Niu B; Chen Q
    J Appl Microbiol; 2019 Jan; 126(1):102-112. PubMed ID: 30365207
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Silymarin exerts antifungal effects via membrane-targeted mode of action by increasing permeability and inducing oxidative stress.
    Yun DG; Lee DG
    Biochim Biophys Acta Biomembr; 2017 Mar; 1859(3):467-474. PubMed ID: 28069415
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rapamycin (AY-22,989), a new antifungal antibiotic. III. In vitro and in vivo evaluation.
    Baker H; Sidorowicz A; Sehgal SN; Vézina C
    J Antibiot (Tokyo); 1978 Jun; 31(6):539-45. PubMed ID: 28309
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Plagiochin E, an antifungal bis(bibenzyl), exerts its antifungal activity through mitochondrial dysfunction-induced reactive oxygen species accumulation in Candida albicans.
    Wu XZ; Cheng AX; Sun LM; Sun SJ; Lou HX
    Biochim Biophys Acta; 2009 Aug; 1790(8):770-7. PubMed ID: 19446008
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Micafungin alters the amino acid, nucleic acid and central carbon metabolism of Candida albicans at subinhibitory concentrations: novel insights into mechanisms of action.
    Katragkou A; Williams M; Sternberg S; Pantazatos D; Roilides E; Walsh TJ
    J Antimicrob Chemother; 2017 Mar; 72(3):712-716. PubMed ID: 28039272
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Selective inhibition of 14 alpha-desmethyl sterol synthesis in Candida albicans by terconazole, a new triazole antimycotic.
    Isaacson DM; Tolman EL; Tobia AJ; Rosenthale ME; McGuire JL; Vanden Bossche H; Janssen PA
    J Antimicrob Chemother; 1988 Mar; 21(3):333-43. PubMed ID: 3129389
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Interactions between antimycetic imidazole derivatives and lipids, waxes and triterpenes (author's transl)].
    Högl F; Raab W
    Mykosen; 1980 Dec; 23(12):669-81. PubMed ID: 7012611
    [No Abstract]   [Full Text] [Related]  

  • 50. On the mode of action of a new antifungal antibiotic, aculeacin A: inhibition of cell wall synthesis in Saccharomyces cerevisiae.
    Mizoguchi J; Saito T; Mizuno K; Hayano K
    J Antibiot (Tokyo); 1977 Apr; 30(4):308-13. PubMed ID: 324960
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Antifungal effect and mode of action of glochidioboside against Candida albicans membranes.
    Lee H; Choi H; Ko HJ; Woo ER; Lee DG
    Biochem Biophys Res Commun; 2014 Jan; 444(1):30-5. PubMed ID: 24434147
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A new look at the antibiotic amphotericin B effect on Candida albicans plasma membrane permeability and cell viability functions.
    Chudzik B; Koselski M; Czuryło A; Trębacz K; Gagoś M
    Eur Biophys J; 2015 Feb; 44(1-2):77-90. PubMed ID: 25557523
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular mode of action of the antifungal beta-amino acid BAY 10-8888.
    Ziegelbauer K; Babczinski P; Schönfeld W
    Antimicrob Agents Chemother; 1998 Sep; 42(9):2197-205. PubMed ID: 9736535
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Increased drug sensitivity in Candida albicans cells accumulating 14-methylated sterols.
    Shimokawa O; Kato Y; Nakayama H
    J Med Vet Mycol; 1986 Dec; 24(6):481-3. PubMed ID: 3553523
    [TBL] [Abstract][Full Text] [Related]  

  • 55. 2-amino-nonyl-6-methoxyl-tetralin muriate activity against Candida albicans augments endogenous reactive oxygen species production --a microarray analysis study.
    Liang RM; Yong XL; Jiang YP; Tan YH; Dai BD; Wang SH; Hu TT; Chen X; Li N; Dong ZH; Huang XC; Chen J; Cao YB; Jiang YY
    FEBS J; 2011 Apr; 278(7):1075-85. PubMed ID: 21251230
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Anti-Candida albicans natural products, sources of new antifungal drugs: A review.
    Zida A; Bamba S; Yacouba A; Ouedraogo-Traore R; Guiguemdé RT
    J Mycol Med; 2017 Mar; 27(1):1-19. PubMed ID: 27842800
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The synthesis, regulation, and functions of sterols in Candida albicans: Well-known but still lots to learn.
    Lv QZ; Yan L; Jiang YY
    Virulence; 2016 Aug; 7(6):649-59. PubMed ID: 27221657
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interaction of oleficin with the inner membrane of rat liver mitochondria.
    Mészáros L; Hoffmann L; König T; Horváth I
    J Antibiot (Tokyo); 1980 May; 33(5):494-500. PubMed ID: 6448831
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Partricin, an antifungal and antiprotozoal polyene antibiotic.
    Bruzzese T; Binda I; Ghielmetti G; Notarianni AF
    Farmaco Sci; 1974 Apr; 29(4):331-4. PubMed ID: 4208028
    [No Abstract]   [Full Text] [Related]  

  • 60. Effects of chitosan on Candida albicans: conditions for its antifungal activity.
    Peña A; Sánchez NS; Calahorra M
    Biomed Res Int; 2013; 2013():527549. PubMed ID: 23844364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.