BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 3812752)

  • 1. Maps of optical action potentials and NADH fluorescence in intact working hearts.
    Salama G; Lombardi R; Elson J
    Am J Physiol; 1987 Feb; 252(2 Pt 2):H384-94. PubMed ID: 3812752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypoxia and hypothermia enhance spatial heterogeneities of repolarization in guinea pig hearts: analysis of spatial autocorrelation of optically recorded action potential durations.
    Salama G; Kanai AJ; Huang D; Efimov IR; Girouard SD; Rosenbaum DS
    J Cardiovasc Electrophysiol; 1998 Feb; 9(2):164-83. PubMed ID: 9511890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous maps of optical action potentials and calcium transients in guinea-pig hearts: mechanisms underlying concordant alternans.
    Choi BR; Salama G
    J Physiol; 2000 Nov; 529 Pt 1(Pt 1):171-88. PubMed ID: 11080260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical mapping of repolarization and refractoriness from intact hearts.
    Efimov IR; Huang DT; Rendt JM; Salama G
    Circulation; 1994 Sep; 90(3):1469-80. PubMed ID: 8087954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical mapping reveals that repolarization spreads anisotropically and is guided by fiber orientation in guinea pig hearts.
    Kanai A; Salama G
    Circ Res; 1995 Oct; 77(4):784-802. PubMed ID: 7554126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NADH fluorescence imaging of isolated biventricular working rabbit hearts.
    Asfour H; Wengrowski AM; Jaimes R; Swift LM; Kay MW
    J Vis Exp; 2012 Jul; (65):. PubMed ID: 22872126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular calcium handling heterogeneities in intact guinea pig hearts.
    Katra RP; Pruvot E; Laurita KR
    Am J Physiol Heart Circ Physiol; 2004 Feb; 286(2):H648-56. PubMed ID: 14551057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NADH fluorescence in isolated guinea-pig and rat cardiomyocytes exposed to low or high stimulation rates and effect of metabolic inhibition with cyanide.
    Griffiths EJ; Lin H; Suleiman MS
    Biochem Pharmacol; 1998 Jul; 56(2):173-9. PubMed ID: 9698070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial uniformity of action potentials indicates base-to-apex depolarization and repolarization of rainbow trout (Oncorhynchus mykiss) ventricle.
    Badr A; Hassinen M; Vornanen M
    J Exp Biol; 2022 Sep; 225(17):. PubMed ID: 35950359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrophysiologic and extracellular ionic changes during acute ischemia in failing and normal rabbit myocardium.
    Vermeulen JT; Tan HL; Rademaker H; Schumacher CA; Loh P; Opthof T; Coronel R; Janse MJ
    J Mol Cell Cardiol; 1996 Jan; 28(1):123-31. PubMed ID: 8745220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium-antagonist effects of norbormide on isolated perfused heart and cardiac myocytes of guinea-pig: a comparison with verapamil.
    Bova S; Cargnelli G; D'Amato E; Forti S; Yang Q; Trevisi L; Debetto P; Cima L; Luciani S; Padrini R
    Br J Pharmacol; 1997 Jan; 120(1):19-24. PubMed ID: 9117093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An automatic cardiac action potential duration meter.
    Lab MJ; Child RK
    Am J Physiol; 1979 Jan; 236(1):H183-8. PubMed ID: 434169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autonomic nerve stimulation reverses ventricular repolarization sequence in rabbit hearts.
    Mantravadi R; Gabris B; Liu T; Choi BR; de Groat WC; Ng GA; Salama G
    Circ Res; 2007 Apr; 100(7):e72-80. PubMed ID: 17363699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NADH changes during hypoxia, ischemia, and increased work differ between isolated heart preparations.
    Wengrowski AM; Kuzmiak-Glancy S; Jaimes R; Kay MW
    Am J Physiol Heart Circ Physiol; 2014 Feb; 306(4):H529-37. PubMed ID: 24337462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can optical recordings of membrane potential be used to screen for drug-induced action potential prolongation in single cardiac myocytes?
    Hardy ME; Lawrence CL; Standen NB; Rodrigo GC
    J Pharmacol Toxicol Methods; 2006; 54(2):173-82. PubMed ID: 16632384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of endogenous NADH fluorescence for real-time in situ visualization of epicardial radiofrequency ablation lesions and gaps.
    Mercader M; Swift L; Sood S; Asfour H; Kay M; Sarvazyan N
    Am J Physiol Heart Circ Physiol; 2012 May; 302(10):H2131-8. PubMed ID: 22408016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Examination of the Effects of Conduction Slowing on the Upstroke of Optically Recorded Action Potentials.
    O'Shea C; Pavlovic D; Rajpoot K; Winter J
    Front Physiol; 2019; 10():1295. PubMed ID: 31681008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new laser scanning system for measuring action potential propagation in the heart.
    Dillon S; Morad M
    Science; 1981 Oct; 214(4519):453-6. PubMed ID: 6974891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired epicardial activation-repolarization coupling contributes to the proarrhythmic effects of hypokalaemia and dofetilide in guinea pig ventricles.
    Osadchii OE
    Acta Physiol (Oxf); 2014 May; 211(1):48-60. PubMed ID: 24533513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autofluorescence spectroscopy for NADH and flavoproteins redox state monitoring in the isolated rat heart subjected to ischemia-reperfusion.
    Papayan G; Petrishchev N; Galagudza M
    Photodiagnosis Photodyn Ther; 2014 Sep; 11(3):400-8. PubMed ID: 24854770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.