These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38127734)

  • 1. Autonomous, multiproperty-driven molecular discovery: From predictions to measurements and back.
    Koscher BA; Canty RB; McDonald MA; Greenman KP; McGill CJ; Bilodeau CL; Jin W; Wu H; Vermeire FH; Jin B; Hart T; Kulesza T; Li SC; Jaakkola TS; Barzilay R; Gómez-Bombarelli R; Green WH; Jensen KF
    Science; 2023 Dec; 382(6677):eadi1407. PubMed ID: 38127734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-the-fly closed-loop materials discovery via Bayesian active learning.
    Kusne AG; Yu H; Wu C; Zhang H; Hattrick-Simpers J; DeCost B; Sarker S; Oses C; Toher C; Curtarolo S; Davydov AV; Agarwal R; Bendersky LA; Li M; Mehta A; Takeuchi I
    Nat Commun; 2020 Nov; 11(1):5966. PubMed ID: 33235197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpretable Machine Learning Models for Molecular Design of Tyrosine Kinase Inhibitors Using Variational Autoencoders and Perturbation-Based Approach of Chemical Space Exploration.
    Krishnan K; Kassab R; Agajanian S; Verkhivker G
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An artificial intelligence enabled chemical synthesis robot for exploration and optimization of nanomaterials.
    Jiang Y; Salley D; Sharma A; Keenan G; Mullin M; Cronin L
    Sci Adv; 2022 Oct; 8(40):eabo2626. PubMed ID: 36206340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Actively Searching: Inverse Design of Novel Molecules with Simultaneously Optimized Properties.
    Iovanac NC; MacKnight R; Savoie BM
    J Phys Chem A; 2022 Jan; 126(2):333-340. PubMed ID: 34985908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning-accelerated design and synthesis of polyelemental heterostructures.
    Wahl CB; Aykol M; Swisher JH; Montoya JH; Suram SK; Mirkin CA
    Sci Adv; 2021 Dec; 7(52):eabj5505. PubMed ID: 34936439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploration of Chemical Space for Designing Functional Molecules Accounting for Geometric Stability.
    Shiraogawa T; Hasegawa JY
    J Phys Chem Lett; 2022 Sep; 13(36):8620-8627. PubMed ID: 36073988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Learning to Generate
    Colby SM; Nuñez JR; Hodas NO; Corley CD; Renslow RR
    Anal Chem; 2020 Jan; 92(2):1720-1729. PubMed ID: 31661259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AlphaFlow: autonomous discovery and optimization of multi-step chemistry using a self-driven fluidic lab guided by reinforcement learning.
    Volk AA; Epps RW; Yonemoto DT; Masters BS; Castellano FN; Reyes KG; Abolhasani M
    Nat Commun; 2023 Mar; 14(1):1403. PubMed ID: 36918561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Navigating Transition-Metal Chemical Space: Artificial Intelligence for First-Principles Design.
    Janet JP; Duan C; Nandy A; Liu F; Kulik HJ
    Acc Chem Res; 2021 Feb; 54(3):532-545. PubMed ID: 33480674
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Kalikadien AV; Pidko EA; Sinha V
    Digit Discov; 2022 Feb; 1(1):8-25. PubMed ID: 35340336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian molecular design with a chemical language model.
    Ikebata H; Hongo K; Isomura T; Maezono R; Yoshida R
    J Comput Aided Mol Des; 2017 Apr; 31(4):379-391. PubMed ID: 28281211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining machine learning and high-throughput experimentation to discover photocatalytically active organic molecules.
    Li X; Maffettone PM; Che Y; Liu T; Chen L; Cooper AI
    Chem Sci; 2021 Aug; 12(32):10742-10754. PubMed ID: 34476057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Target-Driven Design of Deep-UV Nonlinear Optical Materials via Interpretable Machine Learning.
    Wu M; Tikhonov E; Tudi A; Kruglov I; Hou X; Xie C; Pan S; Yang Z
    Adv Mater; 2023 Jun; 35(23):e2300848. PubMed ID: 36929243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the potential of machine learning to design antidiabetic molecules: a comprehensive study with experimental validation.
    Devaraji V; Sivaraman J
    J Biomol Struct Dyn; 2024; 42(23):13290-13311. PubMed ID: 37938122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assigning confidence to molecular property prediction.
    Nigam A; Pollice R; Hurley MFD; Hickman RJ; Aldeghi M; Yoshikawa N; Chithrananda S; Voelz VA; Aspuru-Guzik A
    Expert Opin Drug Discov; 2021 Sep; 16(9):1009-1023. PubMed ID: 34126827
    [No Abstract]   [Full Text] [Related]  

  • 17. 3D-Scaffold: A Deep Learning Framework to Generate 3D Coordinates of Drug-like Molecules with Desired Scaffolds.
    Joshi RP; Gebauer NWA; Bontha M; Khazaieli M; James RM; Brown JB; Kumar N
    J Phys Chem B; 2021 Nov; 125(44):12166-12176. PubMed ID: 34662142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selecting molecules with diverse structures and properties by maximizing submodular functions of descriptors learned with graph neural networks.
    Nakamura T; Sakaue S; Fujii K; Harabuchi Y; Maeda S; Iwata S
    Sci Rep; 2022 Jan; 12(1):1124. PubMed ID: 35064170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D-SMGE: a pipeline for scaffold-based molecular generation and evaluation.
    Xu C; Liu R; Huang S; Li W; Li Z; Luo HB
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37756591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Applications of Machine Learning in Molecular Property and Chemical Reaction Outcome Predictions.
    Shilpa S; Kashyap G; Sunoj RB
    J Phys Chem A; 2023 Oct; 127(40):8253-8271. PubMed ID: 37769193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.