These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Interpretable Machine Learning Models for Molecular Design of Tyrosine Kinase Inhibitors Using Variational Autoencoders and Perturbation-Based Approach of Chemical Space Exploration. Krishnan K; Kassab R; Agajanian S; Verkhivker G Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232566 [TBL] [Abstract][Full Text] [Related]
4. An artificial intelligence enabled chemical synthesis robot for exploration and optimization of nanomaterials. Jiang Y; Salley D; Sharma A; Keenan G; Mullin M; Cronin L Sci Adv; 2022 Oct; 8(40):eabo2626. PubMed ID: 36206340 [TBL] [Abstract][Full Text] [Related]
12. Bayesian molecular design with a chemical language model. Ikebata H; Hongo K; Isomura T; Maezono R; Yoshida R J Comput Aided Mol Des; 2017 Apr; 31(4):379-391. PubMed ID: 28281211 [TBL] [Abstract][Full Text] [Related]
13. Combining machine learning and high-throughput experimentation to discover photocatalytically active organic molecules. Li X; Maffettone PM; Che Y; Liu T; Chen L; Cooper AI Chem Sci; 2021 Aug; 12(32):10742-10754. PubMed ID: 34476057 [TBL] [Abstract][Full Text] [Related]
14. Target-Driven Design of Deep-UV Nonlinear Optical Materials via Interpretable Machine Learning. Wu M; Tikhonov E; Tudi A; Kruglov I; Hou X; Xie C; Pan S; Yang Z Adv Mater; 2023 Jun; 35(23):e2300848. PubMed ID: 36929243 [TBL] [Abstract][Full Text] [Related]
15. Exploring the potential of machine learning to design antidiabetic molecules: a comprehensive study with experimental validation. Devaraji V; Sivaraman J J Biomol Struct Dyn; 2024; 42(23):13290-13311. PubMed ID: 37938122 [TBL] [Abstract][Full Text] [Related]
16. Assigning confidence to molecular property prediction. Nigam A; Pollice R; Hurley MFD; Hickman RJ; Aldeghi M; Yoshikawa N; Chithrananda S; Voelz VA; Aspuru-Guzik A Expert Opin Drug Discov; 2021 Sep; 16(9):1009-1023. PubMed ID: 34126827 [No Abstract] [Full Text] [Related]
17. 3D-Scaffold: A Deep Learning Framework to Generate 3D Coordinates of Drug-like Molecules with Desired Scaffolds. Joshi RP; Gebauer NWA; Bontha M; Khazaieli M; James RM; Brown JB; Kumar N J Phys Chem B; 2021 Nov; 125(44):12166-12176. PubMed ID: 34662142 [TBL] [Abstract][Full Text] [Related]
18. Selecting molecules with diverse structures and properties by maximizing submodular functions of descriptors learned with graph neural networks. Nakamura T; Sakaue S; Fujii K; Harabuchi Y; Maeda S; Iwata S Sci Rep; 2022 Jan; 12(1):1124. PubMed ID: 35064170 [TBL] [Abstract][Full Text] [Related]
19. 3D-SMGE: a pipeline for scaffold-based molecular generation and evaluation. Xu C; Liu R; Huang S; Li W; Li Z; Luo HB Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37756591 [TBL] [Abstract][Full Text] [Related]
20. Recent Applications of Machine Learning in Molecular Property and Chemical Reaction Outcome Predictions. Shilpa S; Kashyap G; Sunoj RB J Phys Chem A; 2023 Oct; 127(40):8253-8271. PubMed ID: 37769193 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]