These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 38127840)
1. Verification in the Early Stages of the COVID-19 Pandemic: Sentiment Analysis of Japanese Twitter Users. Ueda R; Han F; Zhang H; Aoki T; Ogasawara K JMIR Infodemiology; 2024 Feb; 4():e37881. PubMed ID: 38127840 [TBL] [Abstract][Full Text] [Related]
2. Public Health Surveillance of Behavioral Cancer Risk Factors During the COVID-19 Pandemic: Sentiment and Emotion Analysis of Twitter Data. Christodoulakis N; Abdelkader W; Lokker C; Cotterchio M; Griffith LE; Vanderloo LM; Anderson LN JMIR Form Res; 2023 Nov; 7():e46874. PubMed ID: 37917123 [TBL] [Abstract][Full Text] [Related]
3. Tracking discussions of complementary, alternative, and integrative medicine in the context of the COVID-19 pandemic: a month-by-month sentiment analysis of Twitter data. Ng JY; Abdelkader W; Lokker C BMC Complement Med Ther; 2022 Apr; 22(1):105. PubMed ID: 35418205 [TBL] [Abstract][Full Text] [Related]
4. Sentiment and emotion trends in nurses' tweets about the COVID-19 pandemic. Xavier T; Lambert J J Nurs Scholarsh; 2022 Sep; 54(5):613-622. PubMed ID: 35343050 [TBL] [Abstract][Full Text] [Related]
5. COVID-19 Vaccine-Related Discussion on Twitter: Topic Modeling and Sentiment Analysis. Lyu JC; Han EL; Luli GK J Med Internet Res; 2021 Jun; 23(6):e24435. PubMed ID: 34115608 [TBL] [Abstract][Full Text] [Related]
6. Topics, Trends, and Sentiments of Tweets About the COVID-19 Pandemic: Temporal Infoveillance Study. Chandrasekaran R; Mehta V; Valkunde T; Moustakas E J Med Internet Res; 2020 Oct; 22(10):e22624. PubMed ID: 33006937 [TBL] [Abstract][Full Text] [Related]
7. COVID-19 Vaccine Hesitancy: A Global Public Health and Risk Modelling Framework Using an Environmental Deep Neural Network, Sentiment Classification with Text Mining and Emotional Reactions from COVID-19 Vaccination Tweets. Qorib M; Oladunni T; Denis M; Ososanya E; Cotae P Int J Environ Res Public Health; 2023 May; 20(10):. PubMed ID: 37239532 [TBL] [Abstract][Full Text] [Related]
8. Using Natural Language Processing to Explore Social Media Opinions on Food Security: Sentiment Analysis and Topic Modeling Study. Molenaar A; Lukose D; Brennan L; Jenkins EL; McCaffrey TA J Med Internet Res; 2024 Mar; 26():e47826. PubMed ID: 38512326 [TBL] [Abstract][Full Text] [Related]
9. Twitter sentiment analysis for COVID-19 associated mucormycosis. Singh M; Dhillon HK; Ichhpujani P; Iyengar S; Kaur R Indian J Ophthalmol; 2022 May; 70(5):1773-1779. PubMed ID: 35502071 [TBL] [Abstract][Full Text] [Related]
10. Tracking Public Attitudes Toward COVID-19 Vaccination on Tweets in Canada: Using Aspect-Based Sentiment Analysis. Jang H; Rempel E; Roe I; Adu P; Carenini G; Janjua NZ J Med Internet Res; 2022 Mar; 24(3):e35016. PubMed ID: 35275835 [TBL] [Abstract][Full Text] [Related]
11. Topics and Sentiments of Public Concerns Regarding COVID-19 Vaccines: Social Media Trend Analysis. Monselise M; Chang CH; Ferreira G; Yang R; Yang CC J Med Internet Res; 2021 Oct; 23(10):e30765. PubMed ID: 34581682 [TBL] [Abstract][Full Text] [Related]
12. Text Analysis of Evolving Emotions and Sentiments in COVID-19 Twitter Communication. Storey VC; O'Leary DE Cognit Comput; 2022 Jul; ():1-24. PubMed ID: 35915743 [TBL] [Abstract][Full Text] [Related]
13. Uncovering the Reasons Behind COVID-19 Vaccine Hesitancy in Serbia: Sentiment-Based Topic Modeling. Ljajić A; Prodanović N; Medvecki D; Bašaragin B; Mitrović J J Med Internet Res; 2022 Nov; 24(11):e42261. PubMed ID: 36301673 [TBL] [Abstract][Full Text] [Related]
14. Using Natural Language Processing to Explore "Dry January" Posts on Twitter: Longitudinal Infodemiology Study. Russell AM; Valdez D; Chiang SC; Montemayor BN; Barry AE; Lin HC; Massey PM J Med Internet Res; 2022 Nov; 24(11):e40160. PubMed ID: 36343184 [TBL] [Abstract][Full Text] [Related]
15. Examining Tweet Content and Engagement of Canadian Public Health Agencies and Decision Makers During COVID-19: Mixed Methods Analysis. Slavik CE; Buttle C; Sturrock SL; Darlington JC; Yiannakoulias N J Med Internet Res; 2021 Mar; 23(3):e24883. PubMed ID: 33651705 [TBL] [Abstract][Full Text] [Related]
16. Seeking and Providing Social Support on Twitter for Trauma and Distress During the COVID-19 Pandemic: Content and Sentiment Analysis. Esener Y; McCall T; Lakdawala A; Kim H J Med Internet Res; 2023 Aug; 25():e46343. PubMed ID: 37651178 [TBL] [Abstract][Full Text] [Related]
17. Tweet Topics and Sentiments Relating to COVID-19 Vaccination Among Australian Twitter Users: Machine Learning Analysis. Kwok SWH; Vadde SK; Wang G J Med Internet Res; 2021 May; 23(5):e26953. PubMed ID: 33886492 [TBL] [Abstract][Full Text] [Related]
18. Social Network Analysis of COVID-19 Sentiments: Application of Artificial Intelligence. Hung M; Lauren E; Hon ES; Birmingham WC; Xu J; Su S; Hon SD; Park J; Dang P; Lipsky MS J Med Internet Res; 2020 Aug; 22(8):e22590. PubMed ID: 32750001 [TBL] [Abstract][Full Text] [Related]
19. Pediatric Cancer Communication on Twitter: Natural Language Processing and Qualitative Content Analysis. Lau N; Zhao X; O'Daffer A; Weissman H; Barton K JMIR Cancer; 2024 May; 10():e52061. PubMed ID: 38713506 [TBL] [Abstract][Full Text] [Related]
20. Public perceptions on Twitter of nurses during the COVID-19 pandemic. Tokac U; Brysiewicz P; Chipps J Contemp Nurse; 2022; 58(5-6):414-423. PubMed ID: 36370034 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]