These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38127943)

  • 1. Edge-based graph neural network for ranking critical road segments in a network.
    Jana D; Malama S; Narasimhan S; Taciroglu E
    PLoS One; 2023; 18(12):e0296045. PubMed ID: 38127943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The multiscale importance of road segments in a network disruption scenario: a risk-based approach.
    Freiria S; Tavares AO; Pedro JuliĆ£o R
    Risk Anal; 2015 Mar; 35(3):484-500. PubMed ID: 25263956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short-Term Traffic State Prediction Based on the Critical Road Selection Optimization in Transportation Networks.
    Ma T; Gong G; Ren Y
    Comput Intell Neurosci; 2021; 2021():9966382. PubMed ID: 34504523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RARET's coalition-based model: Addressing complex life-sustaining transportation during emergencies.
    Sydnor D
    J Bus Contin Emer Plan; 2024 Jan; 17(3):248-260. PubMed ID: 38424587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resilience of transportation infrastructure networks to road failures.
    Wassmer J; Merz B; Marwan N
    Chaos; 2024 Jan; 34(1):. PubMed ID: 38242106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Managing uncertainty: Lessons from volcanic lava disruption of transportation infrastructure in Puna, Hawaii.
    Kim K; Pant P; Yamashita E
    J Emerg Manag; 2018; 16(1):29-40. PubMed ID: 29542098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of transportation system disruption and accessibility to critical amenities during flooding: Iowa case study.
    Alabbad Y; Mount J; Campbell AM; Demir I
    Sci Total Environ; 2021 Nov; 793():148476. PubMed ID: 34174595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resilience and efficiency in transportation networks.
    Ganin AA; Kitsak M; Marchese D; Keisler JM; Seager T; Linkov I
    Sci Adv; 2017 Dec; 3(12):e1701079. PubMed ID: 29291243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restoration of services in disrupted infrastructure systems: A network science approach.
    Ulusan A; Ergun O
    PLoS One; 2018; 13(2):e0192272. PubMed ID: 29444191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attention based spatio-temporal graph convolutional network with focal loss for crash risk evaluation on urban road traffic network based on multi-source risks.
    Liu X; Lu J; Chen X; Fong YHC; Ma X; Zhang F
    Accid Anal Prev; 2023 Nov; 192():107262. PubMed ID: 37598458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Criticality assessment for a regional maritime economy.
    Robinson RM; Ezell B
    J Emerg Manag; 2021; 19(1):69-78. PubMed ID: 33735437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing road criticality and loss of healthcare accessibility during floods: the case of Cyclone Idai, Mozambique 2019.
    Petricola S; Reinmuth M; Lautenbach S; Hatfield C; Zipf A
    Int J Health Geogr; 2022 Oct; 21(1):14. PubMed ID: 36224567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A perspective on quantifying resilience: Combining community and infrastructure capitals.
    Gerges F; Assaad RH; Nassif H; Bou-Zeid E; Boufadel MC
    Sci Total Environ; 2023 Feb; 859(Pt 1):160187. PubMed ID: 36395828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-embedding of edges and nodes with deep graph convolutional neural networks.
    Zhou Y; Huo H; Hou Z; Bu L; Mao J; Wang Y; Lv X; Bu F
    Sci Rep; 2023 Oct; 13(1):16966. PubMed ID: 37807013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Method of Planning Disaster Emergency Rescue Paths in Road-Free Environment.
    Xu Q; Feng S; Sun Q; Zhu X; Chen R; Lihua X; Wu B
    Comput Intell Neurosci; 2022; 2022():2987852. PubMed ID: 35140766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Latent sub-structural resilience mechanisms in temporal human mobility networks during urban flooding.
    Rajput AA; Mostafavi A
    Sci Rep; 2023 Jul; 13(1):10953. PubMed ID: 37414862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study on dynamic simulation and improvement strategies of flood resilience for urban road system.
    Zhang J; Wang H; Huang J; Wang Y; Liu G
    J Environ Manage; 2023 Oct; 344():118770. PubMed ID: 37611346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A two-stage simulation analysis of uncertain road damage on the urban emergency delivery network.
    Song Y; Wu K; Liu D
    PLoS One; 2022; 17(5):e0267043. PubMed ID: 35613114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A topological characterization of flooding impacts on the Zurich road network.
    Casali Y; Heinimann HR
    PLoS One; 2019; 14(7):e0220338. PubMed ID: 31365555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust component: a robustness measure that incorporates access to critical facilities under disruptions.
    Dong S; Wang H; Mostafavi A; Gao J
    J R Soc Interface; 2019 Aug; 16(157):20190149. PubMed ID: 31387488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.