These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38127995)

  • 1. Relationship of Thermostability and Binding Affinity in Metal-binding WW-Domain Minireceptors.
    Pham TL; Conde González MR; Fazliev S; Kishore A; Comba P; Thomas F
    Chembiochem; 2024 Feb; 25(4):e202300715. PubMed ID: 38127995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermostable WW-Domain Scaffold to Design Functional β-Sheet Miniproteins.
    Lindner C; Friemel A; Schwegler N; Timmermann L; Pham TL; Reusche V; Kovermann M; Thomas F
    J Am Chem Soc; 2024 Jun; ():. PubMed ID: 38853610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of thermal unfolding of phenylalanine hydroxylase variants containing different metal cofactors (FeII, CoII, and ZnII) and their isokinetic relationship.
    Loaiza A; Armstrong KM; Baker BM; Abu-Omar MM
    Inorg Chem; 2008 Jun; 47(11):4877-83. PubMed ID: 18433092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 1H NMR spectroscopic studies of calcium-binding proteins. 3. Solution conformations of rat apo-alpha-parvalbumin and metal-bound rat alpha-parvalbumin.
    Williams TC; Corson DC; Oikawa K; McCubbin WD; Kay CM; Sykes BD
    Biochemistry; 1986 Apr; 25(7):1835-46. PubMed ID: 3707914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insights into the role of the WW2 domain on tandem WW-PPxY motif interactions of oxidoreductase WWOX.
    Rotem-Bamberger S; Fahoum J; Keinan-Adamsky K; Tsaban T; Avraham O; Shalev DE; Chill JH; Schueler-Furman O
    J Biol Chem; 2022 Aug; 298(8):102145. PubMed ID: 35716775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal ion binding to the N and A conformers of bovine alpha-lactalbumin.
    Bratcher SC; Kronman MJ
    J Biol Chem; 1984 Sep; 259(17):10875-86. PubMed ID: 6469987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the metal binding properties of a histidine-rich fusogenic peptide by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.
    Sinz A; Jin AJ; Zschörnig O
    J Mass Spectrom; 2003 Nov; 38(11):1150-9. PubMed ID: 14648822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remarkable affinity and selectivity for Cs+ and uranyl (UO22+) binding to the manganese site of the apo-water oxidation complex of photosystem II.
    Ananyev GM; Murphy A; Abe Y; Dismukes GC
    Biochemistry; 1999 Jun; 38(22):7200-9. PubMed ID: 10353831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of naturally occurring charged mutations on the structure, stability, and binding of the Pin1 WW domain.
    Qiao X; Liu Y; Luo L; Chen L; Zhao C; Ai X
    Biochem Biophys Res Commun; 2017 May; 487(2):470-476. PubMed ID: 28431929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Switchable Zinc(II)-Responsive Globular β-Sheet Peptide.
    Pham TL; Kovermann M; Thomas F
    ACS Synth Biol; 2022 Jan; 11(1):254-264. PubMed ID: 34935365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Zn(II)-binding site engineered into retinol-binding protein exhibits metal-ion specificity and allows highly efficient affinity purification with a newly designed metal ligand.
    Schmidt AM; Müller HN; Skerra A
    Chem Biol; 1996 Aug; 3(8):645-53. PubMed ID: 8807898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unravelling the mechanistic details of metal binding to mammalian metallothioneins from stoichiometric, kinetic, and binding affinity data.
    Scheller JS; Irvine GW; Stillman MJ
    Dalton Trans; 2018 Mar; 47(11):3613-3637. PubMed ID: 29431781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inverse tuning of metal binding affinity and protein stability by altering charged coordination residues in designed calcium binding proteins.
    Maniccia AW; Yang W; Johnson JA; Li S; Tjong H; Zhou HX; Shaket LA; Yang JJ
    PMC Biophys; 2009 Dec; 2():11. PubMed ID: 20025729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrinsic disorder and amino acid specificity modulate binding of the WW2 domain in kidney and brain protein (KIBRA) to synaptopodin.
    Kwok E; Rodriguez DJ; Kremerskothen J; Nyarko A
    J Biol Chem; 2019 Nov; 294(46):17383-17394. PubMed ID: 31597702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal protein interactions.
    Sarkar B
    Prog Food Nutr Sci; 1987; 11(3-4):363-400. PubMed ID: 3328221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occupancy of the Zinc-binding Site by Transition Metals Decreases the Substrate Affinity of the Human Dopamine Transporter by an Allosteric Mechanism.
    Li Y; Mayer FP; Hasenhuetl PS; Burtscher V; Schicker K; Sitte HH; Freissmuth M; Sandtner W
    J Biol Chem; 2017 Mar; 292(10):4235-4243. PubMed ID: 28096460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupled intra- and interdomain dynamics support domain cross-talk in Pin1.
    Zhang M; Frederick TE; VanPelt J; Case DA; Peng JW
    J Biol Chem; 2020 Dec; 295(49):16585-16603. PubMed ID: 32963105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A stability concept for metal ion coordination to single-stranded nucleic acids and affinities of individual sites.
    Sigel RK; Sigel H
    Acc Chem Res; 2010 Jul; 43(7):974-84. PubMed ID: 20235593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-binding properties of an Hpn-like histidine-rich protein.
    Zeng YB; Yang N; Sun H
    Chemistry; 2011 May; 17(21):5852-60. PubMed ID: 21520306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Femtomolar Zn(II) affinity in a peptide-based ligand designed to model thiolate-rich metalloprotein active sites.
    Petros AK; Reddi AR; Kennedy ML; Hyslop AG; Gibney BR
    Inorg Chem; 2006 Dec; 45(25):9941-58. PubMed ID: 17140191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.