BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38128131)

  • 1. Curved Membrane Mimics for Quantitative Probing of Protein-Membrane Interactions by Surface Plasmon Resonance.
    Malinick AS; Stuart DD; Lambert AS; Cheng Q
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):84-94. PubMed ID: 38128131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential mechanisms for calcium-dependent protein/membrane association as evidenced from SPR-binding studies on supported biomimetic membranes.
    Rossi C; Homand J; Bauche C; Hamdi H; Ladant D; Chopineau J
    Biochemistry; 2003 Dec; 42(51):15273-83. PubMed ID: 14690437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance.
    Kuziemko GM; Stroh M; Stevens RC
    Biochemistry; 1996 May; 35(20):6375-84. PubMed ID: 8639583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gangliosides in phospholipid bilayer membranes: interaction with tetanus toxin.
    Winter A; Ulrich WP; Wetterich F; Weller U; Galla HJ
    Chem Phys Lipids; 1996 Jun; 81(1):21-34. PubMed ID: 9450318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembled tethered bimolecular lipid membranes.
    Sinner EK; Ritz S; Naumann R; Schiller S; Knoll W
    Adv Clin Chem; 2009; 49():159-79. PubMed ID: 19947359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoplasmonic Sensing Architectures for Decoding Membrane Curvature-Dependent Biomacromolecular Interactions.
    Ferhan AR; Jackman JA; Malekian B; Xiong K; Emilsson G; Park S; Dahlin AB; Cho NJ
    Anal Chem; 2018 Jun; 90(12):7458-7466. PubMed ID: 29806449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate-supported phospholipid membranes studied by surface plasmon resonance and surface plasmon fluorescence spectroscopy.
    Tawa K; Morigaki K
    Biophys J; 2005 Oct; 89(4):2750-8. PubMed ID: 16040759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of brain gangliosides on the formation and properties of supported lipid bilayers.
    Jordan LR; Blauch ME; Baxter AM; Cawley JL; Wittenberg NJ
    Colloids Surf B Biointerfaces; 2019 Nov; 183():110442. PubMed ID: 31472390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale glassification of gold substrates for surface plasmon resonance analysis of protein toxins with supported lipid membranes.
    Phillips KS; Han JH; Martinez M; Wang Z; Carter D; Cheng Q
    Anal Chem; 2006 Jan; 78(2):596-603. PubMed ID: 16408945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of membrane-binding proteins by surface plasmon resonance with an all-aqueous amplification scheme.
    Liu Y; Cheng Q
    Anal Chem; 2012 Apr; 84(7):3179-86. PubMed ID: 22439623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of the binding of cholera toxin to GM1 gangliosides on solid supported lipid bilayer vesicles and inhibition by europium (III) chloride.
    Williams TL; Jenkins AT
    J Am Chem Soc; 2008 May; 130(20):6438-43. PubMed ID: 18412339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organization of gangliosides into membrane nanodomains.
    Sarmento MJ; Ricardo JC; Amaro M; Ĺ achl R
    FEBS Lett; 2020 Nov; 594(22):3668-3697. PubMed ID: 32592178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Nanobar-Supported Lipid Bilayer System for the Study of Membrane Curvature Sensing Proteins in vitro.
    Miao X; Wu J; Zhao W
    J Vis Exp; 2022 Nov; (189):. PubMed ID: 36533817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vesicle fusion studied by surface plasmon resonance and surface plasmon fluorescence spectroscopy.
    Morigaki K; Tawa K
    Biophys J; 2006 Aug; 91(4):1380-7. PubMed ID: 16731563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of Ganglioside-Rich Supported Lipid Bilayer Formation with Tracer Vesicle Fluorescence Imaging.
    Sharma A; Negi G; Chaudhary M; Parveen N
    Langmuir; 2023 Aug; 39(33):11694-11707. PubMed ID: 37552772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanodiscs for immobilization of lipid bilayers and membrane receptors: kinetic analysis of cholera toxin binding to a glycolipid receptor.
    Borch J; Torta F; Sligar SG; Roepstorff P
    Anal Chem; 2008 Aug; 80(16):6245-52. PubMed ID: 18616345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of air-stable, supported membrane arrays with photolithography for study of phosphoinositide-protein interactions using surface plasmon resonance imaging.
    Wang Z; Wilkop T; Han JH; Dong Y; Linman MJ; Cheng Q
    Anal Chem; 2008 Aug; 80(16):6397-404. PubMed ID: 18620431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the Interaction of Dielectric Nanoparticles with Supported Lipid Membrane Coatings on Nanoplasmonic Arrays.
    Ferhan AR; Ma GJ; Jackman JA; Sut TN; Park JH; Cho NJ
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28644423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of Multiple Sclerosis Biomarkers in Serum by Ganglioside Microarrays and Surface Plasmon Resonance Imaging.
    Malinick AS; Lambert AS; Stuart DD; Li B; Puente E; Cheng Q
    ACS Sens; 2020 Nov; 5(11):3617-3626. PubMed ID: 33115236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery.
    Patching SG
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt A):43-55. PubMed ID: 23665295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.