These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 38128132)
21. A brief survey on human activity recognition using motor imagery of EEG signals. Mahalungkar SP; Shrivastava R; Angadi S Electromagn Biol Med; 2024 Oct; ():1-16. PubMed ID: 39425602 [TBL] [Abstract][Full Text] [Related]
22. A Method for Sensor-Based Activity Recognition in Missing Data Scenario. Hossain T; Ahad MAR; Inoue S Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32650486 [TBL] [Abstract][Full Text] [Related]
23. Classification of foot drop gait characteristic due to lumbar radiculopathy using machine learning algorithms. Sharif Bidabadi S; Murray I; Lee GYF; Morris S; Tan T Gait Posture; 2019 Jun; 71():234-240. PubMed ID: 31082655 [TBL] [Abstract][Full Text] [Related]
24. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers. Deist TM; Dankers FJWM; Valdes G; Wijsman R; Hsu IC; Oberije C; Lustberg T; van Soest J; Hoebers F; Jochems A; El Naqa I; Wee L; Morin O; Raleigh DR; Bots W; Kaanders JH; Belderbos J; Kwint M; Solberg T; Monshouwer R; Bussink J; Dekker A; Lambin P Med Phys; 2018 Jul; 45(7):3449-3459. PubMed ID: 29763967 [TBL] [Abstract][Full Text] [Related]
25. Ensem-HAR: An Ensemble Deep Learning Model for Smartphone Sensor-Based Human Activity Recognition for Measurement of Elderly Health Monitoring. Bhattacharya D; Sharma D; Kim W; Ijaz MF; Singh PK Biosensors (Basel); 2022 Jun; 12(6):. PubMed ID: 35735541 [TBL] [Abstract][Full Text] [Related]
26. Human Activity Recognition Using Attention-Mechanism-Based Deep Learning Feature Combination. Akter M; Ansary S; Khan MA; Kim D Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420881 [TBL] [Abstract][Full Text] [Related]
27. Feature fusion using deep learning for smartphone based human activity recognition. Thakur D; Biswas S Int J Inf Technol; 2021; 13(4):1615-1624. PubMed ID: 34151135 [TBL] [Abstract][Full Text] [Related]
28. Computer Vision and Machine Learning-Based Gait Pattern Recognition for Flat Fall Prediction. Chen B; Chen C; Hu J; Sayeed Z; Qi J; Darwiche HF; Little BE; Lou S; Darwish M; Foote C; Palacio-Lascano C Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298311 [TBL] [Abstract][Full Text] [Related]
29. Developing a novel hybrid method based on dispersion entropy and adaptive boosting algorithm for human activity recognition. Diykh M; Abdulla S; Deo RC; Siuly S; Ali M Comput Methods Programs Biomed; 2023 Feb; 229():107305. PubMed ID: 36527814 [TBL] [Abstract][Full Text] [Related]
30. Design, development, and evaluation of a local sensor-based gait phase recognition system using a logistic model decision tree for orthosis-control. Farah JD; Baddour N; Lemaire ED J Neuroeng Rehabil; 2019 Feb; 16(1):22. PubMed ID: 30709363 [TBL] [Abstract][Full Text] [Related]
31. A Vision-Based System for Stage Classification of Parkinsonian Gait Using Machine Learning and Synthetic Data. Marquez Chavez J; Tang W Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746246 [TBL] [Abstract][Full Text] [Related]
32. Predictive etiological classification of acute ischemic stroke through interpretable machine learning algorithms: a multicenter, prospective cohort study. Chen S; Yang X; Gu H; Wang Y; Xu Z; Jiang Y; Wang Y BMC Med Res Methodol; 2024 Sep; 24(1):199. PubMed ID: 39256656 [TBL] [Abstract][Full Text] [Related]
33. A hybrid TCN-GRU model for classifying human activities using smartphone inertial signals. Raja Sekaran S; Pang YH; You LZ; Yin OS PLoS One; 2024; 19(8):e0304655. PubMed ID: 39137226 [TBL] [Abstract][Full Text] [Related]
34. Out-of-Distribution Detection of Human Activity Recognition with Smartwatch Inertial Sensors. Boyer P; Burns D; Whyne C Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33804317 [TBL] [Abstract][Full Text] [Related]
35. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction? Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466 [TBL] [Abstract][Full Text] [Related]
36. Human Activity Recognition Algorithm with Physiological and Inertial Signals Fusion: Photoplethysmography, Electrodermal Activity, and Accelerometry. Gilmore J; Nasseri M Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793858 [TBL] [Abstract][Full Text] [Related]
37. Gender Recognition Based on Gradual and Ensemble Learning from Multi-View Gait Energy Images and Poses. Leung TM; Chan KL Sensors (Basel); 2023 Nov; 23(21):. PubMed ID: 37960659 [TBL] [Abstract][Full Text] [Related]
38. Human Activity Recognition in a Free-Living Environment Using an Ear-Worn Motion Sensor. Boborzi L; Decker J; Rezaei R; Schniepp R; Wuehr M Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732771 [TBL] [Abstract][Full Text] [Related]
39. Stochastic Recognition of Human Physical Activities via Augmented Feature Descriptors and Random Forest Model. Tahir SBUD; Dogar AB; Fatima R; Yasin A; Shafiq M; Khan JA; Assam M; Mohamed A; Attia EA Sensors (Basel); 2022 Sep; 22(17):. PubMed ID: 36081091 [TBL] [Abstract][Full Text] [Related]
40. Comparative analysis of weka-based classification algorithms on medical diagnosis datasets. Dou Y; Meng W Technol Health Care; 2023; 31(S1):397-408. PubMed ID: 37066939 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]