These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38128132)

  • 41. Evaluating the Impact of a Two-Stage Multivariate Data Cleansing Approach to Improve to the Performance of Machine Learning Classifiers: A Case Study in Human Activity Recognition.
    Neira-Rodado D; Nugent C; Cleland I; Velasquez J; Viloria A
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32230844
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gait Phase Detection in Walking and Stairs Using Machine Learning.
    Bauman VV; Brandon SCE
    J Biomech Eng; 2022 Dec; 144(12):. PubMed ID: 36062965
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Using a Hybrid Neural Network and a Regularized Extreme Learning Machine for Human Activity Recognition with Smartphone and Smartwatch.
    Tan TH; Shih JY; Liu SH; Alkhaleefah M; Chang YL; Gochoo M
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36992065
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cognitive driven gait freezing phase detection and classification for neuro-rehabilitated patients using machine learning algorithms.
    Khamparia A; Gupta D; Maashi M; Mengash HA
    J Neurosci Methods; 2024 Sep; 409():110183. PubMed ID: 38834145
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Automatic recognition of gait patterns in human motor disorders using machine learning: A review.
    Figueiredo J; Santos CP; Moreno JC
    Med Eng Phys; 2018 Mar; 53():1-12. PubMed ID: 29373231
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Classification of Human Daily Activities Using Ensemble Methods Based on Smartphone Inertial Sensors.
    Ku Abd Rahim KN; Elamvazuthi I; Izhar LI; Capi G
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30486242
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Human activity recognition of children with wearable devices using LightGBM machine learning.
    Csizmadia G; Liszkai-Peres K; Ferdinandy B; Miklósi Á; Konok V
    Sci Rep; 2022 Mar; 12(1):5472. PubMed ID: 35361854
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Accurate fall risk classification in elderly using one gait cycle data and machine learning.
    Nishiyama D; Arita S; Fukui D; Yamanaka M; Yamada H
    Clin Biomech (Bristol); 2024 May; 115():106262. PubMed ID: 38744224
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparing Sampling Strategies for Tackling Imbalanced Data in Human Activity Recognition.
    Alharbi F; Ouarbya L; Ward JA
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214275
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Recent Advances in Bipedal Walking Robots: Review of Gait, Drive, Sensors and Control Systems.
    Mikolajczyk T; Mikołajewska E; Al-Shuka HFN; Malinowski T; Kłodowski A; Pimenov DY; Paczkowski T; Hu F; Giasin K; Mikołajewski D; Macko M
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746222
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Design and Development of an Imitation Detection System for Human Action Recognition Using Deep Learning.
    Alhakbani N; Alghamdi M; Al-Nafjan A
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139734
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identifying best fall-related balance factors and robotic-assisted gait training attributes in 105 post-stroke patients using clinical machine learning models.
    Kim H; Shin J; Kim Y; Lee Y; You JSH
    NeuroRehabilitation; 2024; 55(1):1-10. PubMed ID: 39031394
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ensemble machine learning model trained on a new synthesized dataset generalizes well for stress prediction using wearable devices.
    Vos G; Trinh K; Sarnyai Z; Rahimi Azghadi M
    J Biomed Inform; 2023 Dec; 148():104556. PubMed ID: 38048895
    [TBL] [Abstract][Full Text] [Related]  

  • 54. How Validation Methodology Influences Human Activity Recognition Mobile Systems.
    Bragança H; Colonna JG; Oliveira HABF; Souto E
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336529
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Machine Learning-Based Peripheral Artery Disease Identification Using Laboratory-Based Gait Data.
    Al-Ramini A; Hassan M; Fallahtafti F; Takallou MA; Rahman H; Qolomany B; Pipinos II; Alsaleem F; Myers SA
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236533
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Machine-Learning and Radiomics-Based Preoperative Prediction of Ki-67 Expression in Glioma Using MRI Data.
    Ni J; Zhang H; Yang Q; Fan X; Xu J; Sun J; Zhang J; Hu Y; Xiao Z; Zhao Y; Zhu H; Shi X; Feng W; Wang J; Wan C; Zhang X; Liu Y; You Y; Yu Y
    Acad Radiol; 2024 Aug; 31(8):3397-3405. PubMed ID: 38458887
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparing Person-Specific and Independent Models on Subject-Dependent and Independent Human Activity Recognition Performance.
    Scheurer S; Tedesco S; O'Flynn B; Brown KN
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32610614
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Novel Segmentation Scheme with Multi-Probability Threshold for Human Activity Recognition Using Wearable Sensors.
    Zhou B; Wang C; Huan Z; Li Z; Chen Y; Gao G; Li H; Dong C; Liang J
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236542
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Walking stability in patients with benign paroxysmal positional vertigo: an objective assessment using wearable accelerometers and machine learning.
    Zhang Y; Wang H; Yao Y; Liu J; Sun X; Gu D
    J Neuroeng Rehabil; 2021 Mar; 18(1):56. PubMed ID: 33789693
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Personalized Human Activity Recognition Based on Integrated Wearable Sensor and Transfer Learning.
    Fu Z; He X; Wang E; Huo J; Huang J; Wu D
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33525538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.