These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 38128272)
41. Biological signatures and prediction of an immunosuppressive status-persistent critical illness-among orthopedic trauma patients using machine learning techniques. Lei M; Han Z; Wang S; Guo C; Zhang X; Song Y; Lin F; Huang T Front Immunol; 2022; 13():979877. PubMed ID: 36325351 [TBL] [Abstract][Full Text] [Related]
42. Ten-Year Multicenter Retrospective Study Utilizing Machine Learning Algorithms to Identify Patients at High Risk of Venous Thromboembolism After Radical Gastrectomy. Liu Y; Song C; Tian Z; Shen W Int J Gen Med; 2023; 16():1909-1925. PubMed ID: 37228741 [TBL] [Abstract][Full Text] [Related]
43. Parsimonious machine learning models to predict resource use in cardiac surgery across a statewide collaborative. Verma A; Sanaiha Y; Hadaya J; Maltagliati AJ; Tran Z; Ramezani R; Shemin RJ; Benharash P; JTCVS Open; 2022 Sep; 11():214-228. PubMed ID: 36172420 [TBL] [Abstract][Full Text] [Related]
44. Machine Learning Models for Predicting Influential Factors of Early Outcomes in Acute Ischemic Stroke: Registry-Based Study. Su PY; Wei YC; Luo H; Liu CH; Huang WY; Chen KF; Lin CP; Wei HY; Lee TH JMIR Med Inform; 2022 Mar; 10(3):e32508. PubMed ID: 35072631 [TBL] [Abstract][Full Text] [Related]
45. Machine Learning Algorithm Identifies Patients at High Risk for Early Complications After Intracranial Tumor Surgery: Registry-Based Cohort Study. van Niftrik CHB; van der Wouden F; Staartjes VE; Fierstra J; Stienen MN; Akeret K; Sebök M; Fedele T; Sarnthein J; Bozinov O; Krayenbühl N; Regli L; Serra C Neurosurgery; 2019 Oct; 85(4):E756-E764. PubMed ID: 31149726 [TBL] [Abstract][Full Text] [Related]
46. Machine learning approaches for prediction of early death among lung cancer patients with bone metastases using routine clinical characteristics: An analysis of 19,887 patients. Cui Y; Shi X; Wang S; Qin Y; Wang B; Che X; Lei M Front Public Health; 2022; 10():1019168. PubMed ID: 36276398 [TBL] [Abstract][Full Text] [Related]
47. Improving risk assessment for post-surgical low cardiac output syndrome in patients without severely reduced ejection fraction undergoing open aortic valve replacement. The role of global longitudinal strain and right ventricular free wall strain. Balderas-Muñoz K; Rodríguez-Zanella H; Fritche-Salazar JF; Ávila-Vanzzini N; Juárez Orozco LE; Arias-Godínez JA; Calvillo-Argüelles O; Rivera-Peralta S; Sauza-Sosa JC; Ruiz-Esparza ME; Bucio-Reta E; Rómero A; Espinola-Zavaleta N; Domínguez-Mendez B; Gaxiola-Macias M; Martínez-Ríos MA Int J Cardiovasc Imaging; 2017 Oct; 33(10):1483-1489. PubMed ID: 28488096 [TBL] [Abstract][Full Text] [Related]
48. Prediction of subjective cognitive decline after corpus callosum infarction by an interpretable machine learning-derived early warning strategy. Xu Y; Sun X; Liu Y; Huang Y; Liang M; Sun R; Yin G; Song C; Ding Q; Du B; Bi X Front Neurol; 2023; 14():1123607. PubMed ID: 37416313 [TBL] [Abstract][Full Text] [Related]
49. Machine Learning for Predicting Postoperative Atrial Fibrillation After Cardiac Surgery: A Scoping Review of Current Literature. El-Sherbini AH; Shah A; Cheng R; Elsebaie A; Harby AA; Redfearn D; El-Diasty M Am J Cardiol; 2023 Dec; 209():66-75. PubMed ID: 37871512 [TBL] [Abstract][Full Text] [Related]
50. [Construction of a predictive model for in-hospital mortality of sepsis patients in intensive care unit based on machine learning]. Zhu M; Hu C; He Y; Qian Y; Tang S; Hu Q; Hao C Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2023 Jul; 35(7):696-701. PubMed ID: 37545445 [TBL] [Abstract][Full Text] [Related]
51. A Machine-Learning Algorithm to Predict the Likelihood of Prolonged Opioid Use Following Arthroscopic Hip Surgery. Grazal CF; Anderson AB; Booth GJ; Geiger PG; Forsberg JA; Balazs GC Arthroscopy; 2022 Mar; 38(3):839-847.e2. PubMed ID: 34411683 [TBL] [Abstract][Full Text] [Related]
52. Postoperative delirium prediction after cardiac surgery using machine learning models. Yang T; Yang H; Liu Y; Liu X; Ding YJ; Li R; Mao AQ; Huang Y; Li XL; Zhang Y; Yu FX Comput Biol Med; 2024 Feb; 169():107818. PubMed ID: 38134752 [TBL] [Abstract][Full Text] [Related]
53. Using machine learning to predict the bleeding risk for patients with cardiac valve replacement treated with warfarin in hospitalized. Hu Y; Zhang X; Wei M; Yang T; Chen J; Wu X; Zhu Y; Chen X; Lou S; Zhu J Pharmacoepidemiol Drug Saf; 2024 Feb; 33(2):e5756. PubMed ID: 38357810 [TBL] [Abstract][Full Text] [Related]
54. Development and validation of a web-based artificial intelligence prediction model to assess massive intraoperative blood loss for metastatic spinal disease using machine learning techniques. Shi X; Cui Y; Wang S; Pan Y; Wang B; Lei M Spine J; 2024 Jan; 24(1):146-160. PubMed ID: 37704048 [TBL] [Abstract][Full Text] [Related]
55. Explainable machine learning model for predicting the occurrence of postoperative malnutrition in children with congenital heart disease. Shi H; Yang D; Tang K; Hu C; Li L; Zhang L; Gong T; Cui Y Clin Nutr; 2022 Jan; 41(1):202-210. PubMed ID: 34906845 [TBL] [Abstract][Full Text] [Related]
56. Machine Learning Algorithms Predict Functional Improvement After Hip Arthroscopy for Femoroacetabular Impingement Syndrome in Athletes. Kunze KN; Polce EM; Clapp I; Nwachukwu BU; Chahla J; Nho SJ J Bone Joint Surg Am; 2021 Jun; 103(12):1055-1062. PubMed ID: 33877058 [TBL] [Abstract][Full Text] [Related]
57. Machine Learning Models of Postoperative Atrial Fibrillation Prediction After Cardiac Surgery. Lu Y; Chen Q; Zhang H; Huang M; Yao Y; Ming Y; Yan M; Yu Y; Yu L J Cardiothorac Vasc Anesth; 2023 Mar; 37(3):360-366. PubMed ID: 36535840 [TBL] [Abstract][Full Text] [Related]
58. An explainable supervised machine learning predictor of acute kidney injury after adult deceased donor liver transplantation. Zhang Y; Yang D; Liu Z; Chen C; Ge M; Li X; Luo T; Wu Z; Shi C; Wang B; Huang X; Zhang X; Zhou S; Hei Z J Transl Med; 2021 Jul; 19(1):321. PubMed ID: 34321016 [TBL] [Abstract][Full Text] [Related]
59. Use of Machine Learning to Develop and Evaluate Models Using Preoperative and Intraoperative Data to Identify Risks of Postoperative Complications. Xue B; Li D; Lu C; King CR; Wildes T; Avidan MS; Kannampallil T; Abraham J JAMA Netw Open; 2021 Mar; 4(3):e212240. PubMed ID: 33783520 [TBL] [Abstract][Full Text] [Related]
60. Development and performance assessment of novel machine learning models to predict pneumonia after liver transplantation. Chen C; Yang D; Gao S; Zhang Y; Chen L; Wang B; Mo Z; Yang Y; Hei Z; Zhou S Respir Res; 2021 Mar; 22(1):94. PubMed ID: 33789673 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]