These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38128366)

  • 1. Response of rumen microorganisms to pH during anaerobic hydrolysis and acidogenesis of lignocellulose biomass.
    Liang J; Zhang P; Zhang R; Chang J; Chen L; Wang G; Tian Y; Zhang G
    Waste Manag; 2024 Feb; 174():476-486. PubMed ID: 38128366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term rumen microorganism fermentation of corn stover in vitro for volatile fatty acid production.
    Liang J; Fang W; Chang J; Zhang G; Ma W; Nabi M; Zubair M; Zhang R; Chen L; Huang J; Zhang P
    Bioresour Technol; 2022 Aug; 358():127447. PubMed ID: 35690238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metagenomic analysis of community, enzymes and metabolic pathways during corn straw fermentation with rumen microorganisms for volatile fatty acid production.
    Liang J; Fang W; Wang Q; Zubair M; Zhang G; Ma W; Cai Y; Zhang P
    Bioresour Technol; 2021 Dec; 342():126004. PubMed ID: 34583109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of high corn straw loads on short-chain fatty acid production in semi-continuous rumen reactor.
    Liang J; Zhang P; Chen L; Chang J; Zhang R; Zhang G; Tian Y
    Bioresour Technol; 2024 Mar; 395():130396. PubMed ID: 38301941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metagenomic analysis reveals the efficient digestion mechanism of corn stover in Angus bull rumen: Microbial community succession, CAZyme composition and functional gene expression.
    Liang J; Chang J; Zhang R; Fang W; Chen L; Ma W; Zhang Y; Yang W; Li Y; Zhang P; Zhang G
    Chemosphere; 2023 Sep; 336():139242. PubMed ID: 37330070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of rumen and anaerobic sludge microbes for bio harvesting from lignocellulosic biomass.
    Nguyen LN; Nguyen AQ; Johir MAH; Guo W; Ngo HH; Chaves AV; Nghiem LD
    Chemosphere; 2019 Aug; 228():702-708. PubMed ID: 31063917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of substrate load on anaerobic fermentation of rice straw with rumen liquid as inoculum: Hydrolysis and acidogenesis efficiency, enzymatic activities and rumen bacterial community structure.
    Liang J; Zhang H; Zhang P; Zhang G; Cai Y; Wang Q; Zhou Z; Ding Y; Zubair M
    Waste Manag; 2021 Apr; 124():235-243. PubMed ID: 33636425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transformation of bacterial community structure in rumen liquid anaerobic digestion of rice straw.
    Liang J; Zheng W; Zhang H; Zhang P; Cai Y; Wang Q; Zhou Z; Ding Y
    Environ Pollut; 2021 Jan; 269():116130. PubMed ID: 33261966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cosubstrate strategy for enhancing lignocellulose degradation during rumen fermentation in vitro: Characteristics and microorganism composition.
    Xing BS; Han Y; Cao S; Wen J; Zhang K; Yuan H; Wang XC
    Chemosphere; 2020 Jul; 250():126104. PubMed ID: 32097809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous volatile fatty acid production from lignocellulosic biomass by a novel rumen-mimetic bioprocess.
    Agematu H; Takahashi T; Hamano Y
    J Biosci Bioeng; 2017 Nov; 124(5):528-533. PubMed ID: 28690158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative study of artificial cow and sheep rumen fermentation of corn straw and food waste: Batch and continuous operation.
    Xing BS; Cao S; Han Y; Wang XC; Wen J; Zhang K
    Sci Total Environ; 2020 Nov; 745():140731. PubMed ID: 32717608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Persistent action of cow rumen microorganisms in enhancing biodegradation of wheat straw by rumen fermentation.
    Xing BS; Han Y; Wang XC; Wen J; Cao S; Zhang K; Li Q; Yuan H
    Sci Total Environ; 2020 May; 715():136529. PubMed ID: 32007902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple yet effective: Microbial and biotechnological benefits of rumen liquid addition to lignocellulose-degrading biogas plants.
    Nagler M; Kozjek K; Etemadi M; Insam H; Podmirseg SM
    J Biotechnol; 2019 Jul; 300():1-10. PubMed ID: 31082412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fermentation of wet-exploded corn stover for the production of volatile fatty acids.
    Murali N; Fernandez S; Ahring BK
    Bioresour Technol; 2017 Mar; 227():197-204. PubMed ID: 28038397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulating Rumen Conditions Using an Anaerobic Dynamic Membrane Bioreactor to Enhance Hydrolysis of Lignocellulosic Biomass.
    Fonoll X; Zhu K; Aley L; Shrestha S; Raskin L
    Environ Sci Technol; 2024 Jan; 58(3):1741-1751. PubMed ID: 38184844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fibrolytic rumen bacteria of camel and sheep and their applications in the bioconversion of barley straw to soluble sugars for biofuel production.
    Rabee AE; Sayed Alahl AA; Lamara M; Ishaq SL
    PLoS One; 2022; 17(1):e0262304. PubMed ID: 34995335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of whole-plant corn silage treated with lignocellulose-degrading bacteria on growth performance, rumen fermentation, and rumen microflora in sheep.
    Guo W; Guo XJ; Xu LN; Shao LW; Zhu BC; Liu H; Wang YJ; Gao KY
    Animal; 2022 Jul; 16(7):100576. PubMed ID: 35777297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient anaerobic transformation of raw wheat straw by a robust cow rumen-derived microbial consortium.
    Lazuka A; Auer L; Bozonnet S; Morgavi DP; O'Donohue M; Hernandez-Raquet G
    Bioresour Technol; 2015 Nov; 196():241-9. PubMed ID: 26247975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of response surface methodology for optimization of acidogenesis of cattail by rumen cultures.
    Hu ZH; Yu HQ; Zheng JC
    Bioresour Technol; 2006 Nov; 97(16):2103-9. PubMed ID: 16289873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient methane production from agro-industrial residues using anaerobic fungal-rich consortia.
    Thongbunrod N; Chaiprasert P
    World J Microbiol Biotechnol; 2024 Jun; 40(8):239. PubMed ID: 38862848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.