These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 38128382)

  • 21. Cancer cell metabolism and mitochondria: Nutrient plasticity for TCA cycle fueling.
    Corbet C; Feron O
    Biochim Biophys Acta Rev Cancer; 2017 Aug; 1868(1):7-15. PubMed ID: 28110019
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Altered energy metabolism in cancer: a unique opportunity for therapeutic intervention.
    Zhang Y; Yang JM
    Cancer Biol Ther; 2013 Feb; 14(2):81-9. PubMed ID: 23192270
    [TBL] [Abstract][Full Text] [Related]  

  • 23. OXPHOS inhibitors, metabolism and targeted therapies in cancer.
    Cadassou O; Jordheim LP
    Biochem Pharmacol; 2023 May; 211():115531. PubMed ID: 37019188
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Influence of Mitochondrial Energy and 1C Metabolism on the Efficacy of Anticancer Drugs: Exploring Potential Mechanisms of Resistance.
    Franczak M; Toenshoff I; Jansen G; Smolenski RT; Giovannetti E; Peters GJ
    Curr Med Chem; 2023; 30(11):1209-1231. PubMed ID: 35366764
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport.
    Fernie AR; Carrari F; Sweetlove LJ
    Curr Opin Plant Biol; 2004 Jun; 7(3):254-61. PubMed ID: 15134745
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeting mitochondria as a potential therapeutic strategy against chemoresistance in cancer.
    Mukherjee S; Bhatti GK; Chhabra R; Reddy PH; Bhatti JS
    Biomed Pharmacother; 2023 Apr; 160():114398. PubMed ID: 36773523
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cell-Permeable Succinate Increases Mitochondrial Membrane Potential and Glycolysis in Leigh Syndrome Patient Fibroblasts.
    Bakare AB; Rao RR; Iyer S
    Cells; 2021 Aug; 10(9):. PubMed ID: 34571904
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitochondrial uncoupling in cancer cells: Liabilities and opportunities.
    Baffy G
    Biochim Biophys Acta Bioenerg; 2017 Aug; 1858(8):655-664. PubMed ID: 28088333
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Medicinal Chemistry Targeting Mitochondria: From New Vehicles and Pharmacophore Groups to Old Drugs with Mitochondrial Activity.
    Catalán M; Olmedo I; Faúndez J; Jara JA
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33217901
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioenergetics pathways and therapeutic resistance in gliomas: emerging role of mitochondria.
    Griguer CE; Oliva CR
    Curr Pharm Des; 2011; 17(23):2421-7. PubMed ID: 21827418
    [TBL] [Abstract][Full Text] [Related]  

  • 31. α-Lactalbumin-oleic acid complex kills tumor cells by inducing excess energy metabolism but inhibiting mRNA expression of the related enzymes.
    Fang B; Zhang M; Ge KS; Xing HZ; Ren FZ
    J Dairy Sci; 2018 Jun; 101(6):4853-4863. PubMed ID: 29550120
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metformin Antagonizes Cancer Cell Proliferation by Suppressing Mitochondrial-Dependent Biosynthesis.
    Griss T; Vincent EE; Egnatchik R; Chen J; Ma EH; Faubert B; Viollet B; DeBerardinis RJ; Jones RG
    PLoS Biol; 2015 Dec; 13(12):e1002309. PubMed ID: 26625127
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glycolysis-induced drug resistance in tumors-A response to danger signals?
    Marcucci F; Rumio C
    Neoplasia; 2021 Feb; 23(2):234-245. PubMed ID: 33418276
    [TBL] [Abstract][Full Text] [Related]  

  • 34. UGCG overexpression leads to increased glycolysis and increased oxidative phosphorylation of breast cancer cells.
    Schömel N; Gruber L; Alexopoulos SJ; Trautmann S; Olzomer EM; Byrne FL; Hoehn KL; Gurke R; Thomas D; Ferreirós N; Geisslinger G; Wegner MS
    Sci Rep; 2020 May; 10(1):8182. PubMed ID: 32424263
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic reprogramming: the emerging concept and associated therapeutic strategies.
    Yoshida GJ
    J Exp Clin Cancer Res; 2015 Oct; 34():111. PubMed ID: 26445347
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxidative phosphorylation as a target to arrest malignant neoplasias.
    Rodríguez-Enríquez S; Gallardo-Pérez JC; Marín-Hernández A; Aguilar-Ponce JL; Mandujano-Tinoco EA; Meneses A; Moreno-Sánchez R
    Curr Med Chem; 2011; 18(21):3156-67. PubMed ID: 21671858
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mitochondria-mediated energy adaption in cancer: the H(+)-ATP synthase-geared switch of metabolism in human tumors.
    Sánchez-Aragó M; Formentini L; Cuezva JM
    Antioxid Redox Signal; 2013 Jul; 19(3):285-98. PubMed ID: 22901241
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Targeting Oxidative Phosphorylation Reverses Drug Resistance in Cancer Cells by Blocking Autophagy Recycling.
    Lee JS; Lee H; Jang H; Woo SM; Park JB; Lee SH; Kang JH; Kim HY; Song J; Kim SY
    Cells; 2020 Sep; 9(9):. PubMed ID: 32883024
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeting Mitochondrial OXPHOS and Their Regulatory Signals in Prostate Cancers.
    Chen CL; Lin CY; Kung HJ
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948229
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of compartmentalized signaling pathways in the control of mitochondrial activities in cancer cells.
    Rinaldi L; Delle Donne R; Borzacchiello D; Insabato L; Feliciello A
    Biochim Biophys Acta Rev Cancer; 2018 Apr; 1869(2):293-302. PubMed ID: 29673970
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.