These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 38128391)

  • 1. Temperature impacts on the growth of hydrogen bubbles during ultrasonic vibration-enhanced hydrogen generation.
    Su H; Sun J; Wang C; Wang H
    Ultrason Sonochem; 2024 Jan; 102():106734. PubMed ID: 38128391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on the influence of ultrasound on the kinetic behaviour of hydrogen bubbles produced by proton exchange membrane electrolysis with water.
    Su H; Sun J; Wang C; Wang H
    Ultrason Sonochem; 2024 Aug; 108():106968. PubMed ID: 38941702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrodynamic behavior of bubbles at gas-evolving electrode in ultrasonic field during water electrolysis.
    Cho KM; Deshmukh PR; Shin WG
    Ultrason Sonochem; 2021 Dec; 80():105796. PubMed ID: 34678597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The size of active bubbles for the production of hydrogen in sonochemical reaction field.
    Merouani S; Hamdaoui O
    Ultrason Sonochem; 2016 Sep; 32():320-327. PubMed ID: 27150777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical study on dual-frequency ultrasonic enhancing cavitation effect based on bubble dynamic evolution.
    Ye L; Zhu X; Liu Y
    Ultrason Sonochem; 2019 Dec; 59():104744. PubMed ID: 31473426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review on Bubble Dynamics in Proton Exchange Membrane Water Electrolysis: Towards Optimal Green Hydrogen Yield.
    Sangtam BT; Park H
    Micromachines (Basel); 2023 Dec; 14(12):. PubMed ID: 38138403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on the bubble transport mechanism in an acoustic standing wave field.
    Xi X; Cegla FB; Lowe M; Thiemann A; Nowak T; Mettin R; Holsteyns F; Lippert A
    Ultrasonics; 2011 Dec; 51(8):1014-25. PubMed ID: 21719064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study on the primary and secondary nucleation of ice by power ultrasound.
    Chow R; Blindt R; Chivers R; Povey M
    Ultrasonics; 2005 Feb; 43(4):227-30. PubMed ID: 15567197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bubble size distribution in acoustic droplet vaporization via dissolution using an ultrasound wide-beam method.
    Xu S; Zong Y; Li W; Zhang S; Wan M
    Ultrason Sonochem; 2014 May; 21(3):975-83. PubMed ID: 24360840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shape Oscillation-Induced Early Detachment of Bubble from a Submerged Microcapillary Nozzle.
    Tang J; Hu R; Xu L; Liu H; Luo J
    Langmuir; 2023 Nov; 39(46):16596-16605. PubMed ID: 37939345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging and analysis of individual cavitation microbubbles around dental ultrasonic scalers.
    Vyas N; Dehghani H; Sammons RL; Wang QX; Leppinen DM; Walmsley AD
    Ultrasonics; 2017 Nov; 81():66-72. PubMed ID: 28595164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical estimation of the temperature and pressure within collapsing acoustical bubbles.
    Merouani S; Hamdaoui O; Rezgui Y; Guemini M
    Ultrason Sonochem; 2014 Jan; 21(1):53-9. PubMed ID: 23769748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cavitation bubble structures below a soft boundary in an ultrasonic field.
    Li F; Huang C; Zhang X; Wang C; Hu J; Chen S; Tian H; Shen Z; Guo J; Lin S
    Ultrason Sonochem; 2023 Aug; 98():106500. PubMed ID: 37413916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method for consistent cavitation bubble generation at different voltages.
    Prabhakar A; Sarkar U; Ghoshal R; Ghoshal A
    Rev Sci Instrum; 2023 Aug; 94(8):. PubMed ID: 38065168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental investigation on flow boiling bubble motion under ultrasonic field in vertical minichannel by using bubble tracking algorithm.
    Xiao J; Zhang J
    Ultrason Sonochem; 2023 May; 95():106365. PubMed ID: 36924598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bubble formation at a gas-evolving microelectrode.
    Fernández D; Maurer P; Martine M; Coey JM; Möbius ME
    Langmuir; 2014 Nov; 30(43):13065-74. PubMed ID: 24694174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of surface tension on the dynamics of a single micro bubble near a rigid wall in an ultrasonic field.
    Wu H; Zheng H; Li Y; Ohl CD; Yu H; Li D
    Ultrason Sonochem; 2021 Oct; 78():105735. PubMed ID: 34479075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of acoustic droplet vaporization for control of bubble generation under flow conditions.
    Kang ST; Huang YL; Yeh CK
    Ultrasound Med Biol; 2014 Mar; 40(3):551-61. PubMed ID: 24433748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Propelled Detachment upon Coalescence of Surface Bubbles.
    Lv P; Peñas P; Le The H; Eijkel J; van den Berg A; Zhang X; Lohse D
    Phys Rev Lett; 2021 Dec; 127(23):235501. PubMed ID: 34936792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Surface Tension on Dynamic Characteristics of Single Bubble in Free-Field Exposed to Ultrasound.
    Wu H; Zhang T; Lai X; Yu H; Li D; Zheng H; Chen H; Ohl CD; Li Y
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.