BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38128641)

  • 1. Design, preparation, and characterization of lubricating polymer brushes for biomedical applications.
    Song X; Man J; Qiu Y; Wang J; Liu J; Li R; Zhang Y; Li J; Li J; Chen Y
    Acta Biomater; 2024 Feb; 175():76-105. PubMed ID: 38128641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-density zwitterionic polymer brushes exhibit robust lubrication properties and high antithrombotic efficacy in blood-contacting medical devices.
    Song X; Man J; Qiu Y; Wang J; Liu J; Li R; Zhang Y; Li J; Li J; Chen Y
    Acta Biomater; 2024 Apr; 178():111-123. PubMed ID: 38423351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular level studies on interfacial hydration of zwitterionic and other antifouling polymers in situ.
    Leng C; Sun S; Zhang K; Jiang S; Chen Z
    Acta Biomater; 2016 Aug; 40():6-15. PubMed ID: 26923530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lubricating Polymer Gels/Coatings: Syntheses and Measurement Strategies.
    Zhao P; Klein J
    Gels; 2024 Jun; 10(6):. PubMed ID: 38920953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brush-like polymers: design, synthesis and applications.
    Yin L; Liu L; Zhang N
    Chem Commun (Camb); 2021 Oct; 57(81):10484-10499. PubMed ID: 34550120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Design of Antifouling Polymer Brushes Using Sequence-Specific Peptoids.
    Lau KH; Sileika TS; Park SH; Sousa AM; Burch P; Szleifer I; Messersmith PB
    Adv Mater Interfaces; 2015 Jan; 2(1):. PubMed ID: 26167449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Durable Lubricity of Photo-Cross-Linked Zwitterionic Polymer Brushes Supported by Poly(ether ether ketone) Substrate.
    Nakano H; Noguchi Y; Kakinoki S; Yamakawa M; Osaka I; Iwasaki Y
    ACS Appl Bio Mater; 2020 Feb; 3(2):1071-1078. PubMed ID: 35019309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular simulations and understanding of antifouling zwitterionic polymer brushes.
    Liu Y; Zhang D; Ren B; Gong X; Xu L; Feng ZQ; Chang Y; He Y; Zheng J
    J Mater Chem B; 2020 May; 8(17):3814-3828. PubMed ID: 32227061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward Infection-Resistant Surfaces: Achieving High Antimicrobial Peptide Potency by Modulating the Functionality of Polymer Brush and Peptide.
    Yu K; Lo JC; Mei Y; Haney EF; Siren E; Kalathottukaren MT; Hancock RE; Lange D; Kizhakkedathu JN
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28591-605. PubMed ID: 26641308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perspectives on Theoretical Models and Molecular Simulations of Polymer Brushes.
    Tang Y; Liu Y; Zhang D; Zheng J
    Langmuir; 2024 Jan; 40(2):1487-1502. PubMed ID: 38153400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cyclic brush zwitterionic polymer based pH-responsive nanocarrier-mediated dual drug delivery system with lubrication maintenance for osteoarthritis treatment.
    Zhang M; Peng X; Ding Y; Ke X; Ren K; Xin Q; Qin M; Xie J; Li J
    Mater Horiz; 2023 Jul; 10(7):2554-2567. PubMed ID: 37078123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymer Brushes: Efficient Synthesis and Applications.
    Feng C; Huang X
    Acc Chem Res; 2018 Sep; 51(9):2314-2323. PubMed ID: 30137964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multivalent counterions diminish the lubricity of polyelectrolyte brushes.
    Yu J; Jackson NE; Xu X; Morgenstern Y; Kaufman Y; Ruths M; de Pablo JJ; Tirrell M
    Science; 2018 Jun; 360(6396):1434-1438. PubMed ID: 29954973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate-Independent Micropatterning of Polymer Brushes Based on Photolytic Deactivation of Chemical Vapor Deposition Based Surface-Initiated Atom-Transfer Radical Polymerization Initiator Films.
    Kumar R; Welle A; Becker F; Kopyeva I; Lahann J
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):31965-31976. PubMed ID: 30180547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of solutes on hydration and lubricity of dextran brushes.
    Goren T; Crockett R; Spencer ND
    Chimia (Aarau); 2012; 66(4):192-5. PubMed ID: 22613147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of Hydration Repulsion of Zwitterionic Polymer Brushes Resistant to Protein Adhesion through Molecular Simulations.
    Song X; Man J; Qiu Y; Wang J; Li R; Zhang Y; Cui G; Li J; Li J; Chen Y
    ACS Appl Mater Interfaces; 2024 Apr; 16(14):17145-17162. PubMed ID: 38534071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymer brush: a promising grafting approach to scaffolds for tissue engineering.
    Kim W; Jung J
    BMB Rep; 2016 Dec; 49(12):655-661. PubMed ID: 27697112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface Preconditioning Influences the Antifouling Capabilities of Zwitterionic and Nonionic Polymer Brushes.
    Víšová I; Vrabcová M; Forinová M; Zhigunová Y; Mironov V; Houska M; Bittrich E; Eichhorn KJ; Hashim H; Schovánek P; Dejneka A; Vaisocherová-Lísalová H
    Langmuir; 2020 Jul; 36(29):8485-8493. PubMed ID: 32506911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative Study on the Lubrication Mechanism and Performance of Two Representative Ionic and Nonionic Self-Adhesive Polymer Coatings.
    Jia Y; Yang Y; Zhang H
    Langmuir; 2024 Apr; 40(15):8271-8283. PubMed ID: 38557053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoparticle Brushes: Macromolecular Ligands for Materials Synthesis.
    Hueckel T; Luo X; Aly OF; Macfarlane RJ
    Acc Chem Res; 2023 Jul; 56(14):1931-1941. PubMed ID: 37390490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.