These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38128807)

  • 21. Chemical group-dependent plasma polymerisation preferentially directs adipose stem cell differentiation towards osteogenic or chondrogenic lineages.
    Griffin MF; Ibrahim A; Seifalian AM; Butler PEM; Kalaskar DM; Ferretti P
    Acta Biomater; 2017 Mar; 50():450-461. PubMed ID: 27956359
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combined treatment with platelet-rich plasma and insulin favours chondrogenic and osteogenic differentiation of human adipose-derived stem cells in three-dimensional collagen scaffolds.
    Scioli MG; Bielli A; Gentile P; Cervelli V; Orlandi A
    J Tissue Eng Regen Med; 2017 Aug; 11(8):2398-2410. PubMed ID: 27074878
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of gelatin/carboxymethyl chitosan/nano-hydroxyapatite composite 3D macroporous scaffold for bone tissue engineering applications.
    Maji S; Agarwal T; Das J; Maiti TK
    Carbohydr Polym; 2018 Jun; 189():115-125. PubMed ID: 29580388
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Argon plasma modification promotes adipose derived stem cells osteogenic and chondrogenic differentiation on nanocomposite polyurethane scaffolds; implications for skeletal tissue engineering.
    Griffin MF; Ibrahim A; Seifalian AM; Butler PEM; Kalaskar DM; Ferretti P
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110085. PubMed ID: 31546386
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chitosan particles agglomerated scaffolds for cartilage and osteochondral tissue engineering approaches with adipose tissue derived stem cells.
    B Malafaya PP; Pedro AJ; Peterbauer A; Gabriel C; Redl H; Reis RL
    J Mater Sci Mater Med; 2005 Dec; 16(12):1077-85. PubMed ID: 16362204
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface-Modified Nano-Hydroxyapatite Uniformly Dispersed on High-Porous GelMA Scaffold Surfaces for Enhanced Osteochondral Regeneration.
    Zheng S; Li D; Liu Q; Tang C; Hu W; Ma S; Xu Y; Ma Y; Guo Y; Wei B; Du C; Wang L
    Int J Nanomedicine; 2023; 18():5907-5923. PubMed ID: 37886722
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electroactive Hydroxyapatite/Carbon Nanofiber Scaffolds for Osteogenic Differentiation of Human Adipose-Derived Stem Cells.
    Sun B; Sun Y; Han S; Zhang R; Wang X; Meng C; Ji T; Sun C; Ren N; Ge S; Liu H; Yu Y; Wang J
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613973
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human Periodontal Ligament Stem Cells Transplanted with Nanohydroxyapatite/Chitosan/Gelatin 3D Porous Scaffolds Promote Jaw Bone Regeneration in Swine.
    Zhao Q; Li G; Wang T; Jin Y; Lu W; Ji J
    Stem Cells Dev; 2021 May; 30(10):548-559. PubMed ID: 33736461
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development and in vitro assessment of a bi-layered chitosan-nano-hydroxyapatite osteochondral scaffold.
    Pitrolino KA; Felfel RM; Pellizzeri LM; McLaren J; Popov AA; Sottile V; Scotchford CA; Scammell BE; Roberts GAF; Grant DM
    Carbohydr Polym; 2022 Apr; 282():119126. PubMed ID: 35123750
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Osteogenic differentiation potential of mesenchymal stem cells cultured on nanofibrous scaffold improved in the presence of pulsed electromagnetic field.
    Arjmand M; Ardeshirylajimi A; Maghsoudi H; Azadian E
    J Cell Physiol; 2018 Feb; 233(2):1061-1070. PubMed ID: 28419435
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Perfusion conditioning of hydroxyapatite-chitosan-gelatin scaffolds for bone tissue regeneration from human mesenchymal stem cells.
    Sellgren KL; Ma T
    J Tissue Eng Regen Med; 2012 Jan; 6(1):49-59. PubMed ID: 21308991
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation of a biphase composite scaffold and its application in tissue engineering for femoral osteochondral defects in rabbits.
    Ruan SQ; Yan L; Deng J; Huang WL; Jiang DM
    Int Orthop; 2017 Sep; 41(9):1899-1908. PubMed ID: 28616703
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Experimental study on tissue engineered cartilage constructed by three-dimensional bioprinted human adipose-derived stem cells combined with gelatin methacryloyl].
    Mu L; Zeng J; Huang Y; Lin Y; Jiang H; Teng L
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2021 Jul; 35(7):896-903. PubMed ID: 34308600
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A 3D multifunctional bi-layer scaffold to regulate stem cell behaviors and promote osteochondral regeneration.
    Zhang P; Chen J; Sun Y; Cao Z; Zhang Y; Mo Q; Yao Q; Zhang W
    J Mater Chem B; 2023 Feb; 11(6):1240-1261. PubMed ID: 36648128
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancement of stem cell differentiation to osteogenic lineage on hydroxyapatite-coated hybrid PLGA/gelatin nanofiber scaffolds.
    Sanaei-Rad P; Jafarzadeh Kashi TS; Seyedjafari E; Soleimani M
    Biologicals; 2016 Nov; 44(6):511-516. PubMed ID: 27720267
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation and Characterization of a Chitosan/Gelatin/Extracellular Matrix Scaffold and Its Application in Tissue Engineering.
    Wang X; Yu T; Chen G; Zou J; Li J; Yan J
    Tissue Eng Part C Methods; 2017 Mar; 23(3):169-179. PubMed ID: 28142371
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biodegradable Gelatin Methacrylate Gel as a Potential Scaffold for Bone Tissue Engineering of Canine Adipose-Derived Stem Cells.
    Aparnathi MK; Patel JS
    J Stem Cells; 2016; 11(3):111-119. PubMed ID: 28296875
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Orsellinic acid-loaded chitosan nanoparticles in gelatin/nanohydroxyapatite scaffolds for bone formation in vitro.
    Yadav LR; Balagangadharan K; Lavanya K; Selvamurugan N
    Life Sci; 2022 Jun; 299():120559. PubMed ID: 35447131
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-Layered Scaffolds for Osteochondral Tissue Engineering: In Vitro Response of Co-Cultured Human Mesenchymal Stem Cells.
    Amadori S; Torricelli P; Panzavolta S; Parrilli A; Fini M; Bigi A
    Macromol Biosci; 2015 Nov; 15(11):1535-45. PubMed ID: 26126665
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-dimensional printed polycaprolactone-based scaffolds provide an advantageous environment for osteogenic differentiation of human adipose-derived stem cells.
    Rumiński S; Ostrowska B; Jaroszewicz J; Skirecki T; Włodarski K; Święszkowski W; Lewandowska-Szumieł M
    J Tissue Eng Regen Med; 2018 Jan; 12(1):e473-e485. PubMed ID: 27599449
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.