BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38129324)

  • 1. Pitstop-2 Upsets The Integrity of Nuclear Pore Complexes (NPCs) by Interaction with β-Propeller Folds of Npc Scaffold Proteins.
    Stefanello ST; Mizdal CR; Shahin V
    Adv Biol (Weinh); 2024 Mar; 8(3):e2300360. PubMed ID: 38129324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clathrin inhibitor Pitstop-2 disrupts the nuclear pore complex permeability barrier.
    Liashkovich I; Pasrednik D; Prystopiuk V; Rosso G; Oberleithner H; Shahin V
    Sci Rep; 2015 May; 5():9994. PubMed ID: 25944393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pitstop-2 and its novel derivative RVD-127 disrupt global cell dynamics and nuclear pores integrity by direct interaction with small GTPases.
    Liashkovich I; Stefanello ST; Vidyadharan R; Haufe G; Erofeev A; Gorelkin PV; Kolmogorov V; Mizdal CR; Dulebo A; Bulk E; Kouzel IU; Shahin V
    Bioeng Transl Med; 2023 Jul; 8(4):e10425. PubMed ID: 37476059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pitstop 2 is a potent inhibitor of clathrin-independent endocytosis.
    Dutta D; Williamson CD; Cole NB; Donaldson JG
    PLoS One; 2012; 7(9):e45799. PubMed ID: 23029248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of the Pitstop family of clathrin inhibitors.
    Robertson MJ; Deane FM; Stahlschmidt W; von Kleist L; Haucke V; Robinson PJ; McCluskey A
    Nat Protoc; 2014 Jul; 9(7):1592-606. PubMed ID: 24922269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clathrin-dependent internalization of the angiotensin II AT₁A receptor links receptor internalization to COX-2 protein expression in rat aortic vascular smooth muscle cells.
    Morinelli TA; Walker LP; Velez JC; Ullian ME
    Eur J Pharmacol; 2015 Feb; 748():143-8. PubMed ID: 25542758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Architecture of the linker-scaffold in the nuclear pore.
    Petrovic S; Samanta D; Perriches T; Bley CJ; Thierbach K; Brown B; Nie S; Mobbs GW; Stevens TA; Liu X; Tomaleri GP; Schaus L; Hoelz A
    Science; 2022 Jun; 376(6598):eabm9798. PubMed ID: 35679425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition clathrin mediated endocytosis: Pitstop 1 and Pitstop 2 chimeras.
    McCluskey A; Prichard K; Chau N; Xue J; Krauss M; Sakoff JA; Gilbert J; Bahnik C; Muehlbauer M; Radetzki S; Robinson PJ; Haucke V
    ChemMedChem; 2024 Jun; ():e202400253. PubMed ID: 38894585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of clathrin by pitstop 2 activates the spindle assembly checkpoint and induces cell death in dividing HeLa cancer cells.
    Smith CM; Haucke V; McCluskey A; Robinson PJ; Chircop M
    Mol Cancer; 2013 Jan; 12():4. PubMed ID: 23327284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-specificity of Pitstop 2 in clathrin-mediated endocytosis.
    Willox AK; Sahraoui YM; Royle SJ
    Biol Open; 2014 Apr; 3(5):326-31. PubMed ID: 24705016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Architecture of the cytoplasmic face of the nuclear pore.
    Bley CJ; Nie S; Mobbs GW; Petrovic S; Gres AT; Liu X; Mukherjee S; Harvey S; Huber FM; Lin DH; Brown B; Tang AW; Rundlet EJ; Correia AR; Chen S; Regmi SG; Stevens TA; Jette CA; Dasso M; Patke A; Palazzo AF; Kossiakoff AA; Hoelz A
    Science; 2022 Jun; 376(6598):eabm9129. PubMed ID: 35679405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clathrin-mediated integrin αIIbβ3 trafficking controls platelet spreading.
    Gao W; Shi P; Chen X; Zhang L; Liu J; Fan X; Luo X
    Platelets; 2018 Sep; 29(6):610-621. PubMed ID: 28961039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the cytoplasmic ring of the
    Zhu X; Huang G; Zeng C; Zhan X; Liang K; Xu Q; Zhao Y; Wang P; Wang Q; Zhou Q; Tao Q; Liu M; Lei J; Yan C; Shi Y
    Science; 2022 Jun; 376(6598):eabl8280. PubMed ID: 35679404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional analysis of Nup133 domains reveals modular building blocks of the nuclear pore complex.
    Berke IC; Boehmer T; Blobel G; Schwartz TU
    J Cell Biol; 2004 Nov; 167(4):591-7. PubMed ID: 15557116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Assembly and Disassembly of the Nuclear Pore Complex: A View from the Structural Side].
    Orlova AV; Georgieva SG; Kopytova DV
    Mol Biol (Mosk); 2023; 57(4):573-586. PubMed ID: 37528778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Getting in touch with the clathrin terminal domain.
    Lemmon SK; Traub LM
    Traffic; 2012 Apr; 13(4):511-9. PubMed ID: 22239657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exceptional structural and mechanical flexibility of the nuclear pore complex.
    Liashkovich I; Meyring A; Kramer A; Shahin V
    J Cell Physiol; 2011 Mar; 226(3):675-82. PubMed ID: 20717933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AI-based structure prediction empowers integrative structural analysis of human nuclear pores.
    Mosalaganti S; Obarska-Kosinska A; Siggel M; Taniguchi R; Turoňová B; Zimmerli CE; Buczak K; Schmidt FH; Margiotta E; Mackmull MT; Hagen WJH; Hummer G; Kosinski J; Beck M
    Science; 2022 Jun; 376(6598):eabm9506. PubMed ID: 35679397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and functional studies of the 252 kDa nucleoporin ELYS reveal distinct roles for its three tethered domains.
    Bilokapic S; Schwartz TU
    Structure; 2013 Apr; 21(4):572-80. PubMed ID: 23499022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple fold composition and modular architecture of the nuclear pore complex.
    Devos D; Dokudovskaya S; Williams R; Alber F; Eswar N; Chait BT; Rout MP; Sali A
    Proc Natl Acad Sci U S A; 2006 Feb; 103(7):2172-7. PubMed ID: 16461911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.