These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 38129364)

  • 41. Data Acquisition and Preparation for Dual-Reference Deep Learning of Image Super-Resolution.
    Guo Y; Wu X; Shu X
    IEEE Trans Image Process; 2022; 31():4393-4404. PubMed ID: 35759597
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Utilizing deep learning techniques to improve image quality and noise reduction in preclinical low-dose PET images in the sinogram domain.
    Manoj Doss KK; Chen JC
    Med Phys; 2024 Jan; 51(1):209-223. PubMed ID: 37966121
    [TBL] [Abstract][Full Text] [Related]  

  • 43. CT Super-Resolution GAN Constrained by the Identical, Residual, and Cycle Learning Ensemble (GAN-CIRCLE).
    You C; Li G; Zhang Y; Zhang X; Shan H; Li M; Ju S; Zhao Z; Zhang Z; Cong W; Vannier MW; Saha PK; Hoffman EA; Wang G
    IEEE Trans Med Imaging; 2020 Jan; 39(1):188-203. PubMed ID: 31217097
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 3D-MRI super-resolution reconstruction using multi-modality based on multi-resolution CNN.
    Kang L; Tang B; Huang J; Li J
    Comput Methods Programs Biomed; 2024 May; 248():108110. PubMed ID: 38452685
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synthesizing high-resolution magnetic resonance imaging using parallel cycle-consistent generative adversarial networks for fast magnetic resonance imaging.
    Xie H; Lei Y; Wang T; Roper J; Dhabaan AH; Bradley JD; Liu T; Mao H; Yang X
    Med Phys; 2022 Jan; 49(1):357-369. PubMed ID: 34821395
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Impact of using sinogram domain data in the super-resolution of CT images on diagnostic information.
    Yu M; Han M; Baek J
    Med Phys; 2024 Apr; 51(4):2817-2833. PubMed ID: 37883787
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Improved generative adversarial network for retinal image super-resolution.
    Qiu D; Cheng Y; Wang X
    Comput Methods Programs Biomed; 2022 Oct; 225():106995. PubMed ID: 35970055
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Medical image super-resolution reconstruction algorithms based on deep learning: A survey.
    Qiu D; Cheng Y; Wang X
    Comput Methods Programs Biomed; 2023 Aug; 238():107590. PubMed ID: 37201252
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evaluation of Swin Transformer and knowledge transfer for denoising of super-resolution structured illumination microscopy data.
    Shah ZH; Müller M; Hübner W; Wang TC; Telman D; Huser T; Schenck W
    Gigascience; 2024 Jan; 13():. PubMed ID: 38217407
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Super-resolution acquisition and reconstruction for cone-beam SPECT with low-resolution detector.
    Cheng Z; Xie L; Feng C; Wen J
    Comput Methods Programs Biomed; 2022 Apr; 217():106683. PubMed ID: 35150999
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Super-resolution of brain tumor MRI images based on deep learning.
    Zhou Z; Ma A; Feng Q; Wang R; Cheng L; Chen X; Yang X; Liao K; Miao Y; Qiu Y
    J Appl Clin Med Phys; 2022 Nov; 23(11):e13758. PubMed ID: 36107021
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An efficient multi-scale learning method for image super-resolution networks.
    Ying W; Dong T; Fan J
    Neural Netw; 2024 Jan; 169():120-133. PubMed ID: 37890362
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluation and development of deep neural networks for image super-resolution in optical microscopy.
    Qiao C; Li D; Guo Y; Liu C; Jiang T; Dai Q; Li D
    Nat Methods; 2021 Feb; 18(2):194-202. PubMed ID: 33479522
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High through-plane resolution CT imaging with self-supervised deep learning.
    Xie H; Lei Y; Wang T; Tian Z; Roper J; Bradley JD; Curran WJ; Tang X; Liu T; Yang X
    Phys Med Biol; 2021 Jul; 66(14):. PubMed ID: 34049297
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Generative Adversarial Network technique for high-quality super-resolution reconstruction of cardiac magnetic resonance images.
    Zhao M; Wei Y; Wong KKL
    Magn Reson Imaging; 2022 Jan; 85():153-160. PubMed ID: 34699953
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Super-resolution reconstruction of real infrared images acquired with unmanned aerial vehicle.
    Xiong Z; Yu Q; Sun T; Chen W; Wu Y; Yin J
    PLoS One; 2020; 15(6):e0234775. PubMed ID: 32555724
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhanced image prior for unsupervised remoting sensing super-resolution.
    Wang J; Shao Z; Huang X; Lu T; Zhang R; Ma J
    Neural Netw; 2021 Nov; 143():400-412. PubMed ID: 34237613
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Single Image Super-Resolution Using Global Regression Based on Multiple Local Linear Mappings.
    Choi JS; Kim M
    IEEE Trans Image Process; 2017 Mar; 26(3):1300-1314. PubMed ID: 28092557
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Learning to Zoom-In via Learning to Zoom-Out: Real-World Super-Resolution by Generating and Adapting Degradation.
    Sun W; Gong D; Shi Q; van den Hengel A; Zhang Y
    IEEE Trans Image Process; 2021; 30():2947-2962. PubMed ID: 33471753
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dual U-Net residual networks for cardiac magnetic resonance images super-resolution.
    Qiu D; Cheng Y; Wang X
    Comput Methods Programs Biomed; 2022 May; 218():106707. PubMed ID: 35255374
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.