These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The genetic basis underlying variation in production of the flavour compound diacetyl by Lactobacillus rhamnosus strains in milk. Lo R; Ho VTT; Bansal N; Turner MS Int J Food Microbiol; 2018 Jan; 265():30-39. PubMed ID: 29121515 [TBL] [Abstract][Full Text] [Related]
3. Cell Growth Density and Nisin A Activity of the Indigenous Lactococcus lactis subsp. cremoris M78 Costarter Depend Strongly on Inoculation Levels of a Commercial Streptococcus thermophilus Starter in Milk: Practical Aspects for Traditional Greek Cheese Processors. Samelis J; Kakouri A J Food Prot; 2020 Mar; 83(3):542-551. PubMed ID: 32084256 [TBL] [Abstract][Full Text] [Related]
4. Harnessing diversity of Lactococcus lactis from raw goat milk: Design of an indigenous starter for the production of Rocamadour, a French PDO cheese. Couderc C; Laroute V; Coddeville M; Caillaud MA; Jard G; Raynaud C; Cocaign-Bousquet M; Tormo H; Daveran-Mingot ML Int J Food Microbiol; 2022 Oct; 379():109837. PubMed ID: 35872491 [TBL] [Abstract][Full Text] [Related]
5. Phenotypic, Technological, Safety, and Genomic Profiles of Gamma-Aminobutyric Acid-Producing Valenzuela JA; Vázquez L; Rodríguez J; Flórez AB; Vasek OM; Mayo B Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38397005 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of autochthonous lactic acid bacteria as starter and non-starter cultures for the production of Traditional Mountain cheese. Carafa I; Stocco G; Franceschi P; Summer A; Tuohy KM; Bittante G; Franciosi E Food Res Int; 2019 Jan; 115():209-218. PubMed ID: 30599933 [TBL] [Abstract][Full Text] [Related]
7. Study of Lactococcus lactis during advanced ripening stages of model cheeses characterized by GC-MS. Ruggirello M; Giordano M; Bertolino M; Ferrocino I; Cocolin L; Dolci P Food Microbiol; 2018 Sep; 74():132-142. PubMed ID: 29706329 [TBL] [Abstract][Full Text] [Related]
8. Streptococcus thermophilus in cheddar cheese--production and fate of galactose. Michel V; Martley FG J Dairy Res; 2001 May; 68(2):317-25. PubMed ID: 11504394 [TBL] [Abstract][Full Text] [Related]
9. Formation of diacetyl and acetoin by Lactococcus lactis via aspartate catabolism. Le Bars D; Yvon M J Appl Microbiol; 2008 Jan; 104(1):171-7. PubMed ID: 17850313 [TBL] [Abstract][Full Text] [Related]
10. Comparative transcriptomic analysis of the flavor production mechanism in yogurt by traditional starter strains. Tian H; Huang N; Yao W; Yu H; Yu B; Chen X; Chen C J Dairy Sci; 2024 Aug; 107(8):5402-5415. PubMed ID: 38331185 [TBL] [Abstract][Full Text] [Related]
11. Effects of Lactobacillus strains on the ripening and organoleptic characteristics of Arzúa-Ulloa cheese. Menéndez S; Centeno JA; Godínez R; Rodríguez-Otero JL Int J Food Microbiol; 2000 Jul; 59(1-2):37-46. PubMed ID: 10946837 [TBL] [Abstract][Full Text] [Related]
12. Investigation of Flavor-Forming Starter Lee HW; Kim IS; Kil BJ; Seo E; Park H; Ham JS; Choi YJ; Huh CS J Microbiol Biotechnol; 2020 Sep; 30(9):1404-1411. PubMed ID: 32522956 [TBL] [Abstract][Full Text] [Related]
13. Transcription profiling of interactions between Lactococcus lactis subsp. cremoris SK11 and Lactobacillus paracasei ATCC 334 during Cheddar cheese simulation. Desfossés-Foucault É; LaPointe G; Roy D Int J Food Microbiol; 2014 May; 178():76-86. PubMed ID: 24674930 [TBL] [Abstract][Full Text] [Related]
14. Use of non-growing Lactococcus lactis cell suspensions for production of volatile metabolites with direct relevance for flavour formation during dairy fermentations. van de Bunt B; Bron PA; Sijtsma L; de Vos WM; Hugenholtz J Microb Cell Fact; 2014 Dec; 13():176. PubMed ID: 25492249 [TBL] [Abstract][Full Text] [Related]
15. Short communication: Change of naturally occurring benzoic acid during skim milk fermentation by commercial cheese starters. Han N; Park SY; Kim SY; Yoo MY; Paik HD; Lim SD J Dairy Sci; 2016 Nov; 99(11):8633-8637. PubMed ID: 27592433 [TBL] [Abstract][Full Text] [Related]
16. Microbial community dynamics in thermophilic undefined milk starter cultures. Parente E; Guidone A; Matera A; De Filippis F; Mauriello G; Ricciardi A Int J Food Microbiol; 2016 Jan; 217():59-67. PubMed ID: 26490650 [TBL] [Abstract][Full Text] [Related]
17. In vivo application and dynamics of lactic acid bacteria for the four-season production of Vastedda-like cheese. Gaglio R; Scatassa ML; Cruciata M; Miraglia V; Corona O; Di Gerlando R; Portolano B; Moschetti G; Settanni L Int J Food Microbiol; 2014 May; 177():37-48. PubMed ID: 24598514 [TBL] [Abstract][Full Text] [Related]
18. New Genetic Determinants for qPCR Identification and the Enumeration of Selected Lactic Acid Bacteria in Raw-Milk Cheese. Stachelska MA; Ekielski A; Karpiński P; Żelaziński T; Kruszewski B Molecules; 2024 Mar; 29(7):. PubMed ID: 38611811 [TBL] [Abstract][Full Text] [Related]
19. Lactococcus lactis Diversity in Undefined Mixed Dairy Starter Cultures as Revealed by Comparative Genome Analyses and Targeted Amplicon Sequencing of Frantzen CA; Kleppen HP; Holo H Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29222100 [TBL] [Abstract][Full Text] [Related]
20. Proteolysis and formation of volatile compounds in cheese manufactured with a bacteriocin-producing adjunct culture. Oumer BA; Gaya P; Fernández-García E; Marciaca R; Garde S; Medina M; Nuñez M J Dairy Res; 2001 Feb; 68(1):117-29. PubMed ID: 11289261 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]