These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 38129628)

  • 21. The effects of feedstock pre-treatment and pyrolysis temperature on the production of biochar from the green seaweed Ulva.
    Roberts DA; de Nys R
    J Environ Manage; 2016 Mar; 169():253-60. PubMed ID: 26773429
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biochar as a sorbent for contaminant management in soil and water: a review.
    Ahmad M; Rajapaksha AU; Lim JE; Zhang M; Bolan N; Mohan D; Vithanage M; Lee SS; Ok YS
    Chemosphere; 2014 Mar; 99():19-33. PubMed ID: 24289982
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activation methods increase biochar's potential for heavy-metal adsorption and environmental remediation: A global meta-analysis.
    Pathy A; Pokharel P; Chen X; Balasubramanian P; Chang SX
    Sci Total Environ; 2023 Mar; 865():161252. PubMed ID: 36587691
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pyrolysis temperature influences the characteristics of rice straw and husk biochar and sorption/desorption behaviour of their biourea composite.
    Vendra Singh S; Chaturvedi S; Dhyani VC; Kasivelu G
    Bioresour Technol; 2020 Oct; 314():123674. PubMed ID: 32593785
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface characterization of maize-straw-derived biochar and their sorption mechanism for Pb2+ and methylene blue.
    Guo C; Zou J; Yang J; Wang K; Song S
    PLoS One; 2020; 15(8):e0238105. PubMed ID: 32853282
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Energy-efficient biochar production for thermal backfill applications.
    Patwa D; Bordoloi U; Dubey AA; Ravi K; Sekharan S; Kalita P
    Sci Total Environ; 2022 Aug; 833():155253. PubMed ID: 35429570
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characteristics and chlorine reactivity of biochar-derived dissolved organic matter: Effects of feedstock type and pyrolysis temperature.
    Li LP; Liu YH; Ren D; Wang JJ
    Water Res; 2022 Mar; 211():118044. PubMed ID: 35033743
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mineral-Biochar Composites: Molecular Structure and Porosity.
    Rawal A; Joseph SD; Hook JM; Chia CH; Munroe PR; Donne S; Lin Y; Phelan D; Mitchell DR; Pace B; Horvat J; Webber JB
    Environ Sci Technol; 2016 Jul; 50(14):7706-14. PubMed ID: 27284608
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemical, physical and morphological properties of biochars produced from agricultural residues: Implications for their use as soil amendment.
    Campos P; Miller AZ; Knicker H; Costa-Pereira MF; Merino A; De la Rosa JM
    Waste Manag; 2020 Mar; 105():256-267. PubMed ID: 32088572
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of the potential of feedstock combinations and their biochars for soil amendment.
    Fouladidorhani M; Shayannejad M; Arthur E
    Waste Manag Res; 2022 Jul; 40(7):932-939. PubMed ID: 34877913
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of pyrolysis temperature and correlation analysis on the yield and physicochemical properties of crop residue biochar.
    Zhang X; Zhang P; Yuan X; Li Y; Han L
    Bioresour Technol; 2020 Jan; 296():122318. PubMed ID: 31675650
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic and isothermal adsorption-desorption of PAEs on biochars: effect of biomass feedstock, pyrolysis temperature, and mechanism implication of desorption hysteresis.
    Jing F; Pan M; Chen J
    Environ Sci Pollut Res Int; 2018 Apr; 25(12):11493-11504. PubMed ID: 29427270
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Compositional heterogeneity of different biochar: Effect of pyrolysis temperature and feedstocks.
    Das SK; Ghosh GK; Avasthe RK; Sinha K
    J Environ Manage; 2021 Jan; 278(Pt 2):111501. PubMed ID: 33157461
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pyrolysis Temperature vs. Application Rate of Biochar Amendments: Impacts on Soil Microbiota and Metribuzin Degradation.
    Mielke KC; Brochado MGDS; Laube AFS; Guimarães T; Medeiros BAP; Mendes KF
    Int J Mol Sci; 2023 Jul; 24(13):. PubMed ID: 37446332
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biochar prepared at different pyrolysis temperatures affects urea-nitrogen immobilization and N
    Gao J; Zhao Y; Zhang W; Sui Y; Jin D; Xin W; Yi J; He D
    PeerJ; 2019; 7():e7027. PubMed ID: 31198642
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of pyrolysis temperature on chemical and physical properties of sewage sludge biochar.
    Khanmohammadi Z; Afyuni M; Mosaddeghi MR
    Waste Manag Res; 2015 Mar; 33(3):275-83. PubMed ID: 25595292
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biofuels from pyrolysis in perspective: trade-offs between energy yields and soil-carbon additions.
    Woolf D; Lehmann J; Fisher EM; Angenent LT
    Environ Sci Technol; 2014 Jun; 48(11):6492-9. PubMed ID: 24787482
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characteristics of maize biochar with different pyrolysis temperatures and its effects on organic carbon, nitrogen and enzymatic activities after addition to fluvo-aquic soil.
    Wang X; Zhou W; Liang G; Song D; Zhang X
    Sci Total Environ; 2015 Dec; 538():137-44. PubMed ID: 26298256
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate.
    Gai X; Wang H; Liu J; Zhai L; Liu S; Ren T; Liu H
    PLoS One; 2014; 9(12):e113888. PubMed ID: 25469875
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass.
    Wang S; Gao B; Zimmerman AR; Li Y; Ma L; Harris WG; Migliaccio KW
    Chemosphere; 2015 Sep; 134():257-62. PubMed ID: 25957037
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.