BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 38129810)

  • 1. Inferring circRNA-drug sensitivity associations via dual hierarchical attention networks and multiple kernel fusion.
    Lu S; Liang Y; Li L; Liao S; Zou Y; Yang C; Ouyang D
    BMC Genomics; 2023 Dec; 24(1):796. PubMed ID: 38129810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting circRNA-drug sensitivity associations by learning multimodal networks using graph auto-encoders and attention mechanism.
    Yang B; Chen H
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36617209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MNCLCDA: predicting circRNA-drug sensitivity associations by using mixed neighbourhood information and contrastive learning.
    Li G; Zeng F; Luo J; Liang C; Xiao Q
    BMC Med Inform Decis Mak; 2023 Dec; 23(1):291. PubMed ID: 38110886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inferring human miRNA-disease associations via multiple kernel fusion on GCNII.
    Lu S; Liang Y; Li L; Liao S; Ouyang D
    Front Genet; 2022; 13():980497. PubMed ID: 36134032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of circRNA-Disease Associations Based on the Combination of Multi-Head Graph Attention Network and Graph Convolutional Network.
    Cao R; He C; Wei P; Su Y; Xia J; Zheng C
    Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DWNN-RLS: regularized least squares method for predicting circRNA-disease associations.
    Yan C; Wang J; Wu FX
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):520. PubMed ID: 30598076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MDGF-MCEC: a multi-view dual attention embedding model with cooperative ensemble learning for CircRNA-disease association prediction.
    Wu Q; Deng Z; Pan X; Shen HB; Choi KS; Wang S; Wu J; Yu DJ
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35907779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting circRNA-drug sensitivity associations via graph attention auto-encoder.
    Deng L; Liu Z; Qian Y; Zhang J
    BMC Bioinformatics; 2022 May; 23(1):160. PubMed ID: 35508967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. circRNA-binding protein site prediction based on multi-view deep learning, subspace learning and multi-view classifier.
    Li H; Deng Z; Yang H; Pan X; Wei Z; Shen HB; Choi KS; Wang L; Wang S; Wu J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34571539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DPMGCDA: Deciphering circRNA-Drug Sensitivity Associations with Dual Perspective Learning and Path-Masked Graph Autoencoder.
    Luo Y; Deng L
    J Chem Inf Model; 2024 May; 64(10):4359-4372. PubMed ID: 38745420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting circRNA-drug resistance associations based on a multimodal graph representation learning framework.
    Liu Z; Dai Q; Yu X; Duan X; Wang C
    IEEE J Biomed Health Inform; 2023 Jul; PP():. PubMed ID: 37498762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inferring disease-associated circRNAs by multi-source aggregation based on heterogeneous graph neural network.
    Lu C; Zhang L; Zeng M; Lan W; Duan G; Wang J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36572658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prioritizing CircRNA-Disease Associations With Convolutional Neural Network Based on Multiple Similarity Feature Fusion.
    Fan C; Lei X; Pan Y
    Front Genet; 2020; 11():540751. PubMed ID: 33193615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GEHGAN: CircRNA-disease association prediction via graph embedding and heterogeneous graph attention network.
    Wang Y; Lu P
    Comput Biol Chem; 2024 Jun; 110():108079. PubMed ID: 38704917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collaborative deep learning improves disease-related circRNA prediction based on multi-source functional information.
    Wang Y; Liu X; Shen Y; Song X; Wang T; Shang X; Peng J
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36847701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GCNCDA: A new method for predicting circRNA-disease associations based on Graph Convolutional Network Algorithm.
    Wang L; You ZH; Li YM; Zheng K; Huang YA
    PLoS Comput Biol; 2020 May; 16(5):e1007568. PubMed ID: 32433655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DeepWalk-aware graph attention networks with CNN for circRNA-drug sensitivity association identification.
    Li G; Li Y; Liang C; Luo J
    Brief Funct Genomics; 2023 Dec; ():. PubMed ID: 38061910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. iCDA-CMG: identifying circRNA-disease associations by federating multi-similarity fusion and collective matrix completion.
    Xiao Q; Zhong J; Tang X; Luo J
    Mol Genet Genomics; 2021 Jan; 296(1):223-233. PubMed ID: 33159254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NSL2CD: identifying potential circRNA-disease associations based on network embedding and subspace learning.
    Xiao Q; Fu Y; Yang Y; Dai J; Luo J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33954582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting CircRNA-Disease Associations via Feature Convolution Learning With Heterogeneous Graph Attention Network.
    Peng L; Yang C; Chen Y; Liu W
    IEEE J Biomed Health Inform; 2023 Jun; 27(6):3072-3082. PubMed ID: 37030839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.