BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 38129810)

  • 21. CircWalk: a novel approach to predict CircRNA-disease association based on heterogeneous network representation learning.
    Kouhsar M; Kashaninia E; Mardani B; Rabiee HR
    BMC Bioinformatics; 2022 Aug; 23(1):331. PubMed ID: 35953785
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting miRNA-disease associations based on graph attention networks and dual Laplacian regularized least squares.
    Wang W; Chen H
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35849099
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DeepCMI: a graph-based model for accurate prediction of circRNA-miRNA interactions with multiple information.
    Li YC; You ZH; Yu CQ; Wang L; Hu L; Hu PW; Qiao Y; Wang XF; Huang YA
    Brief Funct Genomics; 2024 May; 23(3):276-285. PubMed ID: 37539561
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An efficient approach based on multi-sources information to predict circRNA-disease associations using deep convolutional neural network.
    Wang L; You ZH; Huang YA; Huang DS; Chan KCC
    Bioinformatics; 2020 Jul; 36(13):4038-4046. PubMed ID: 31793982
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MNMDCDA: prediction of circRNA-disease associations by learning mixed neighborhood information from multiple distances.
    Li Y; Hu XG; Wang L; Li PP; You ZH
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36384071
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MHADTI: predicting drug-target interactions via multiview heterogeneous information network embedding with hierarchical attention mechanisms.
    Tian Z; Peng X; Fang H; Zhang W; Dai Q; Ye Y
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36242566
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PCDA-HNMP: Predicting circRNA-disease association using heterogeneous network and meta-path.
    Chen L; Zhao X
    Math Biosci Eng; 2023 Nov; 20(12):20553-20575. PubMed ID: 38124565
    [TBL] [Abstract][Full Text] [Related]  

  • 28. GGAECDA: Predicting circRNA-disease associations using graph autoencoder based on graph representation learning.
    Li G; Lin Y; Luo J; Xiao Q; Liang C
    Comput Biol Chem; 2022 Aug; 99():107722. PubMed ID: 35810557
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GraphCDA: a hybrid graph representation learning framework based on GCN and GAT for predicting disease-associated circRNAs.
    Dai Q; Liu Z; Wang Z; Duan X; Guo M
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070619
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting circRNA-Disease Associations Based on Deep Matrix Factorization with Multi-source Fusion.
    Xie G; Chen H; Sun Y; Gu G; Lin Z; Wang W; Li J
    Interdiscip Sci; 2021 Dec; 13(4):582-594. PubMed ID: 34185304
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CDA-SKAG: Predicting circRNA-disease associations using similarity kernel fusion and an attention-enhancing graph autoencoder.
    Wang H; Han J; Li H; Duan L; Liu Z; Cheng H
    Math Biosci Eng; 2023 Feb; 20(5):7957-7980. PubMed ID: 37161181
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computational Prediction of Human Disease- Associated circRNAs Based on Manifold Regularization Learning Framework.
    Xiao Q; Luo J; Dai J
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2661-2669. PubMed ID: 30629521
    [TBL] [Abstract][Full Text] [Related]  

  • 33. GMNN2CD: identification of circRNA-disease associations based on variational inference and graph Markov neural networks.
    Niu M; Zou Q; Wang C
    Bioinformatics; 2022 Apr; 38(8):2246-2253. PubMed ID: 35157027
    [TBL] [Abstract][Full Text] [Related]  

  • 34. GATCDA: Predicting circRNA-Disease Associations Based on Graph Attention Network.
    Bian C; Lei XJ; Wu FX
    Cancers (Basel); 2021 May; 13(11):. PubMed ID: 34070678
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CircR2Disease v2.0: An Updated Web Server for Experimentally Validated circRNA-disease Associations and Its Application.
    Fan C; Lei X; Tie J; Zhang Y; Wu FX; Pan Y
    Genomics Proteomics Bioinformatics; 2022 Jun; 20(3):435-445. PubMed ID: 34856391
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PCirc: random forest-based plant circRNA identification software.
    Yin S; Tian X; Zhang J; Sun P; Li G
    BMC Bioinformatics; 2021 Jan; 22(1):10. PubMed ID: 33407069
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DRGCNCDA: Predicting circRNA-disease interactions based on knowledge graph and disentangled relational graph convolutional network.
    Lan W; Zhang H; Dong Y; Chen Q; Cao J; Peng W; Liu J; Li M
    Methods; 2022 Dec; 208():35-41. PubMed ID: 36280134
    [TBL] [Abstract][Full Text] [Related]  

  • 38. HMCDA: a novel method based on the heterogeneous graph neural network and metapath for circRNA-disease associations prediction.
    Liang S; Liu S; Song J; Lin Q; Zhao S; Li S; Li J; Liang S; Wang J
    BMC Bioinformatics; 2023 Sep; 24(1):335. PubMed ID: 37697297
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of CircRNA-Disease Associations Using KATZ Model Based on Heterogeneous Networks.
    Fan C; Lei X; Wu FX
    Int J Biol Sci; 2018; 14(14):1950-1959. PubMed ID: 30585259
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Convolution Neural Networks Using Deep Matrix Factorization for Predicting Circrna-Disease Association.
    Liu ZH; Ji CM; Ni JC; Wang YT; Qiao LJ; Zheng CH
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):277-284. PubMed ID: 34951853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.