BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 38129810)

  • 41. Convolution Neural Networks Using Deep Matrix Factorization for Predicting Circrna-Disease Association.
    Liu ZH; Ji CM; Ni JC; Wang YT; Qiao LJ; Zheng CH
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):277-284. PubMed ID: 34951853
    [TBL] [Abstract][Full Text] [Related]  

  • 42. CRMSS: predicting circRNA-RBP binding sites based on multi-scale characterizing sequence and structure features.
    Zhang L; Lu C; Zeng M; Li Y; Wang J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36511222
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Predicting CircRNA disease associations using novel node classification and link prediction models on Graph Convolutional Networks.
    Bamunu Mudiyanselage T; Lei X; Senanayake N; Zhang Y; Pan Y
    Methods; 2022 Feb; 198():32-44. PubMed ID: 34748953
    [TBL] [Abstract][Full Text] [Related]  

  • 44. MLNGCF: circRNA-disease associations prediction with multilayer attention neural graph-based collaborative filtering.
    Wu Q; Deng Z; Zhang W; Pan X; Choi KS; Zuo Y; Shen HB; Yu DJ
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37561093
    [TBL] [Abstract][Full Text] [Related]  

  • 45. KFDAE: CircRNA-Disease Associations Prediction Based on Kernel Fusion and Deep Auto-Encoder.
    Kang WY; Gao YL; Wang Y; Li F; Liu JX
    IEEE J Biomed Health Inform; 2024 May; 28(5):3178-3185. PubMed ID: 38408006
    [TBL] [Abstract][Full Text] [Related]  

  • 46. circMeta: a unified computational framework for genomic feature annotation and differential expression analysis of circular RNAs.
    Chen L; Wang F; Bruggeman EC; Li C; Yao B
    Bioinformatics; 2020 Jan; 36(2):539-545. PubMed ID: 31373611
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fusion of multiple heterogeneous networks for predicting circRNA-disease associations.
    Deng L; Zhang W; Shi Y; Tang Y
    Sci Rep; 2019 Jul; 9(1):9605. PubMed ID: 31270357
    [TBL] [Abstract][Full Text] [Related]  

  • 48. NCPCDA: network consistency projection for circRNA-disease association prediction.
    Li G; Yue Y; Liang C; Xiao Q; Ding P; Luo J
    RSC Adv; 2019 Oct; 9(57):33222-33228. PubMed ID: 35529153
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification of circRNA-disease associations via multi-model fusion and ensemble learning.
    Yang J; Lei X; Zhang F
    J Cell Mol Med; 2024 Apr; 28(7):e18180. PubMed ID: 38506066
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identifying circRNA-miRNA interaction based on multi-biological interaction fusion.
    Yao D; Nong L; Qin M; Wu S; Yao S
    Front Microbiol; 2022; 13():987930. PubMed ID: 36620017
    [TBL] [Abstract][Full Text] [Related]  

  • 51. DeepciRGO: functional prediction of circular RNAs through hierarchical deep neural networks using heterogeneous network features.
    Deng L; Lin W; Wang J; Zhang J
    BMC Bioinformatics; 2020 Nov; 21(1):519. PubMed ID: 33183227
    [TBL] [Abstract][Full Text] [Related]  

  • 52. GBDTCDA: Predicting circRNA-disease Associations Based on Gradient Boosting Decision Tree with Multiple Biological Data Fusion.
    Lei X; Fang Z
    Int J Biol Sci; 2019; 15(13):2911-2924. PubMed ID: 31853227
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Circulating plasma circular RNAs as novel diagnostic biomarkers for congenital heart disease in children.
    Wu J; Li J; Liu H; Yin J; Zhang M; Yu Z; Miao H
    J Clin Lab Anal; 2019 Nov; 33(9):e22998. PubMed ID: 31429492
    [TBL] [Abstract][Full Text] [Related]  

  • 54. iCircRBP-DHN: identification of circRNA-RBP interaction sites using deep hierarchical network.
    Yang Y; Hou Z; Ma Z; Li X; Wong KC
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33126261
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A machine learning framework based on multi-source feature fusion for circRNA-disease association prediction.
    Wang L; Wong L; Li Z; Huang Y; Su X; Zhao B; You Z
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070867
    [TBL] [Abstract][Full Text] [Related]  

  • 56. SAGCN: Using graph convolutional network with subgraph-aware for circRNA-drug sensitivity identification.
    Sun W; Ren C; Xu J; Zhang P
    IEEE/ACM Trans Comput Biol Bioinform; 2024 Jun; PP():. PubMed ID: 38885113
    [TBL] [Abstract][Full Text] [Related]  

  • 57. DDA-SKF: Predicting Drug-Disease Associations Using Similarity Kernel Fusion.
    Gao CQ; Zhou YK; Xin XH; Min H; Du PF
    Front Pharmacol; 2021; 12():784171. PubMed ID: 35095495
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An ensemble approach for CircRNA-disease association prediction based on autoencoder and deep neural network.
    Deepthi K; Jereesh AS
    Gene; 2020 Dec; 762():145040. PubMed ID: 32777520
    [TBL] [Abstract][Full Text] [Related]  

  • 59. AutoEdge-CCP: A novel approach for predicting cancer-associated circRNAs and drugs based on automated edge embedding.
    Chen Y; Wang J; Wang C; Zou Q
    PLoS Comput Biol; 2024 Jan; 20(1):e1011851. PubMed ID: 38289973
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Predicting human disease-associated circRNAs based on locality-constrained linear coding.
    Ge E; Yang Y; Gang M; Fan C; Zhao Q
    Genomics; 2020 Mar; 112(2):1335-1342. PubMed ID: 31394170
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.