BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 38129810)

  • 61. Association prediction of CircRNAs and diseases using multi-homogeneous graphs and variational graph auto-encoder.
    Fu Y; Yang R; Zhang L
    Comput Biol Med; 2022 Dec; 151(Pt A):106289. PubMed ID: 36401973
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Potential circRNA-disease association prediction using DeepWalk and network consistency projection.
    Li G; Luo J; Wang D; Liang C; Xiao Q; Ding P; Chen H
    J Biomed Inform; 2020 Dec; 112():103624. PubMed ID: 33217543
    [TBL] [Abstract][Full Text] [Related]  

  • 63. HCRNet: high-throughput circRNA-binding event identification from CLIP-seq data using deep temporal convolutional network.
    Yang Y; Hou Z; Wang Y; Ma H; Sun P; Ma Z; Wong KC; Li X
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189638
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Prediction of circRNA-disease associations based on inductive matrix completion.
    Li M; Liu M; Bin Y; Xia J
    BMC Med Genomics; 2020 Apr; 13(Suppl 5):42. PubMed ID: 32241268
    [TBL] [Abstract][Full Text] [Related]  

  • 65. PWCDA: Path Weighted Method for Predicting circRNA-Disease Associations.
    Lei X; Fang Z; Chen L; Wu FX
    Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30384427
    [TBL] [Abstract][Full Text] [Related]  

  • 66. iCircDA-MF: identification of circRNA-disease associations based on matrix factorization.
    Wei H; Liu B
    Brief Bioinform; 2020 Jul; 21(4):1356-1367. PubMed ID: 31197324
    [TBL] [Abstract][Full Text] [Related]  

  • 67. AMPCDA: Prediction of circRNA-disease associations by utilizing attention mechanisms on metapaths.
    Lu P; Zhang W; Wu J
    Comput Biol Chem; 2024 Feb; 108():107989. PubMed ID: 38016366
    [TBL] [Abstract][Full Text] [Related]  

  • 68. RNMFLP: Predicting circRNA-disease associations based on robust nonnegative matrix factorization and label propagation.
    Peng L; Yang C; Huang L; Chen X; Fu X; Liu W
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35534179
    [TBL] [Abstract][Full Text] [Related]  

  • 69. circRNA expression patterns and circRNA-miRNA-mRNA networks during CV-A16 infection of SH-SY5Y cells.
    Hu Y; Yang R; Zhao W; Liu C; Tan Y; Pu D; Song J; Zhang Y
    Arch Virol; 2021 Nov; 166(11):3023-3035. PubMed ID: 34410499
    [TBL] [Abstract][Full Text] [Related]  

  • 70. An in-silico method with graph-based multi-label learning for large-scale prediction of circRNA-disease associations.
    Xiao Q; Yu H; Zhong J; Liang C; Li G; Ding P; Luo J
    Genomics; 2020 Sep; 112(5):3407-3415. PubMed ID: 32561349
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A novel circRNA-miRNA association prediction model based on structural deep neural network embedding.
    Guo LX; You ZH; Wang L; Yu CQ; Zhao BW; Ren ZH; Pan J
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36088547
    [TBL] [Abstract][Full Text] [Related]  

  • 72. nf-core/circrna: a portable workflow for the quantification, miRNA target prediction and differential expression analysis of circular RNAs.
    Digby B; Finn SP; Ó Broin P
    BMC Bioinformatics; 2023 Jan; 24(1):27. PubMed ID: 36694127
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Comprehensive analysis of the exosomal circRNA-miRNA-mRNA network in breast cancer.
    Mao S; Cheng Y; Huang Y; Xiong H; Gong C
    J Gene Med; 2023 Jul; 25(7):e3500. PubMed ID: 36942488
    [TBL] [Abstract][Full Text] [Related]  

  • 74. GCNCMI: A Graph Convolutional Neural Network Approach for Predicting circRNA-miRNA Interactions.
    He J; Xiao P; Chen C; Zhu Z; Zhang J; Deng L
    Front Genet; 2022; 13():959701. PubMed ID: 35991563
    [TBL] [Abstract][Full Text] [Related]  

  • 75. DeepCIP: A multimodal deep learning method for the prediction of internal ribosome entry sites of circRNAs.
    Zhou Y; Wu J; Yao S; Xu Y; Zhao W; Tong Y; Zhou Z
    Comput Biol Med; 2023 Sep; 164():107288. PubMed ID: 37542919
    [TBL] [Abstract][Full Text] [Related]  

  • 76. RDGAN: Prediction of circRNA-Disease Associations Via Resistance Distance and Graph Attention Network.
    Lu P; Wang Y
    IEEE/ACM Trans Comput Biol Bioinform; 2024 May; PP():. PubMed ID: 38787672
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Investigation of circRNA Expression Profiles and Analysis of circRNA-miRNA-mRNA Networks in an Animal (Mouse) Model of Age-Related Macular Degeneration.
    Liu X; Zhang L; Wang JH; Zeng H; Zou J; Tan W; Zhao H; He Y; Shi J; Yoshida S; Li Y; Zhou Y
    Curr Eye Res; 2020 Sep; 45(9):1173-1180. PubMed ID: 31979995
    [TBL] [Abstract][Full Text] [Related]  

  • 78. SGANRDA: semi-supervised generative adversarial networks for predicting circRNA-disease associations.
    Wang L; Yan X; You ZH; Zhou X; Li HY; Huang YA
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33734296
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Construction of a circRNA-miRNA-mRNA network based on differentially co-expressed circular RNA in gastric cancer tissue and plasma by bioinformatics analysis.
    Gong Y; Jiao Y; Qi X; Fu J; Qian J; Zhu J; Yang H; Tang L
    World J Surg Oncol; 2022 Feb; 20(1):34. PubMed ID: 35164778
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Combining K Nearest Neighbor With Nonnegative Matrix Factorization for Predicting Circrna-Disease Associations.
    Wang MN; Xie XJ; You ZH; Wong L; Li LP; Chen ZH
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(5):2610-2618. PubMed ID: 35675235
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.