These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38130104)

  • 1.
    Yan Z; Pan Y; Huang M; Liu JZ
    J Agric Food Chem; 2024 Jan; 72(1):516-528. PubMed ID: 38130104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo biosynthesis of pterostilbene in an Escherichia coli strain using a new resveratrol O-methyltransferase from Arabidopsis.
    Heo KT; Kang SY; Hong YS
    Microb Cell Fact; 2017 Feb; 16(1):30. PubMed ID: 28202018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De novo resveratrol production through modular engineering of an Escherichia coli-Saccharomyces cerevisiae co-culture.
    Yuan SF; Yi X; Johnston TG; Alper HS
    Microb Cell Fact; 2020 Jul; 19(1):143. PubMed ID: 32664999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Production of Pterostilbene in
    Yan ZB; Liang JL; Niu FX; Shen YP; Liu JZ
    Front Microbiol; 2021; 12():710405. PubMed ID: 34690954
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Liu Y; Song D; Hu H; Yang R; Lyu X
    ACS Synth Biol; 2022 Sep; 11(9):3067-3077. PubMed ID: 35952699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De novo biosynthesis of complex natural product sakuranetin using modular co-culture engineering.
    Wang X; Li Z; Policarpio L; Koffas MAG; Zhang H
    Appl Microbiol Biotechnol; 2020 Jun; 104(11):4849-4861. PubMed ID: 32285175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Escherichia coli coculture for de novo production of esters derived of methyl-branched alcohols and multi-methyl branched fatty acids.
    Bracalente F; Sabatini M; Arabolaza A; Gramajo H
    Microb Cell Fact; 2022 Jan; 21(1):10. PubMed ID: 35033081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo phenol bioproduction from glucose using biosensor-assisted microbial coculture engineering.
    Guo X; Li Z; Wang X; Wang J; Chala J; Lu Y; Zhang H
    Biotechnol Bioeng; 2019 Dec; 116(12):3349-3359. PubMed ID: 31529699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systems Metabolic Engineering of
    Liu X; Li L; Zhao GR
    ACS Synth Biol; 2022 May; 11(5):1746-1757. PubMed ID: 35507680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Escherichia coli coculture systems for the production of biochemical products.
    Zhang H; Pereira B; Li Z; Stephanopoulos G
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):8266-71. PubMed ID: 26111796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-culture engineering for microbial biosynthesis of 3-amino-benzoic acid in Escherichia coli.
    Zhang H; Stephanopoulos G
    Biotechnol J; 2016 Jul; 11(7):981-7. PubMed ID: 27168529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering a Synthetic
    Seo H; Castro G; Trinh CT
    ACS Synth Biol; 2024 Jan; 13(1):259-268. PubMed ID: 38091519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of Escherichia coli for de novo production of 3-phenylpropanol via retrobiosynthesis approach.
    Liu Z; Zhang X; Lei D; Qiao B; Zhao GR
    Microb Cell Fact; 2021 Jun; 20(1):121. PubMed ID: 34176467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Production of Chlorogenic Acid in
    Wang L; Wang H; Chen J; Hu M; Shan X; Zhou J
    J Agric Food Chem; 2023 Oct; 71(41):15204-15212. PubMed ID: 37788431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of caffeoylmalic acid from glucose in engineered Escherichia coli.
    Li T; Zhou W; Bi H; Zhuang Y; Zhang T; Liu T
    Biotechnol Lett; 2018 Jul; 40(7):1057-1065. PubMed ID: 29845386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Level Biosynthesis of Chlorogenic Acid from Mixed Carbon Sources of Xylose and Glucose through a Rationally Refactored Pathway Network.
    Wang Y; Tan H; Wang Y; Qin JL; Zhao X; Di Y; Xie L; Wang Y; Zhao X; Li Z; Ma G; Jiang L; Liu B; Huang D
    J Agric Food Chem; 2024 Feb; 72(7):3633-3643. PubMed ID: 38330270
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Guo D; Wu S; Fu X; Pan H
    J Agric Food Chem; 2022 Jun; 70(25):7736-7741. PubMed ID: 35709502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De Novo Synthesis of Dihydro-β-ionone through Metabolic Engineering and Bacterium-Yeast Coculture.
    Qi Z; Tong X; Ke K; Wang X; Pei J; Bu S; Zhao L
    J Agric Food Chem; 2024 Feb; 72(6):3066-3076. PubMed ID: 38294193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Escherichia coli modular coculture system for resveratrol glucosides production.
    Thuan NH; Trung NT; Cuong NX; Van Cuong D; Van Quyen D; Malla S
    World J Microbiol Biotechnol; 2018 May; 34(6):75. PubMed ID: 29796765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosensor-Guided Atmospheric and Room-Temperature Plasma Mutagenesis and Shuffling for High-Level Production of Shikimic Acid from Sucrose in
    Niu FX; He X; Huang YB; Liu JZ
    J Agric Food Chem; 2020 Oct; 68(42):11765-11773. PubMed ID: 33030899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.