BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 38130202)

  • 1. [Application and prospect of machine learning in orthopaedic trauma].
    Tian C; Chen X; Zhu H; Qin S; Shi L; Rui Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2023 Dec; 37(12):1562-1568. PubMed ID: 38130202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interpretation and reporting of predictive or diagnostic machine-learning research in Trauma & Orthopaedics.
    Farrow L; Zhong M; Ashcroft GP; Anderson L; Meek RMD
    Bone Joint J; 2021 Dec; 103-B(12):1754-1758. PubMed ID: 34847720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial intelligence and computer vision in orthopaedic trauma : the why, what, and how.
    Prijs J; Liao Z; Ashkani-Esfahani S; Olczak J; Gordon M; Jayakumar P; Jutte PC; Jaarsma RL; IJpma FFA; Doornberg JN;
    Bone Joint J; 2022 Aug; 104-B(8):911-914. PubMed ID: 35909378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unveiling the potential of artificial intelligence in orthopaedic surgery.
    Powling AS; Lisacek-Kiosoglous AB; Fontalis A; Mazomenos E; Haddad FS
    Br J Hosp Med (Lond); 2023 Dec; 84(12):1-5. PubMed ID: 38153019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning for the Orthopaedic Surgeon: Uses and Limitations.
    Alsoof D; McDonald CL; Kuris EO; Daniels AH
    J Bone Joint Surg Am; 2022 Sep; 104(17):1586-1594. PubMed ID: 35383655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of Machine Learning Tools in Healthcare Decision Making.
    Jayatilake SMDAC; Ganegoda GU
    J Healthc Eng; 2021; 2021():6679512. PubMed ID: 33575021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial intelligence and machine learning: an introduction for orthopaedic surgeons.
    Martin RK; Ley C; Pareek A; Groll A; Tischer T; Seil R
    Knee Surg Sports Traumatol Arthrosc; 2022 Feb; 30(2):361-364. PubMed ID: 34528133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of patient choice tendency in medical decision-making based on machine learning algorithm.
    Lyu Y; Xu Q; Yang Z; Liu J
    Front Public Health; 2023; 11():1087358. PubMed ID: 36908484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial intelligence in spine care: current applications and future utility.
    Hornung AL; Hornung CM; Mallow GM; Barajas JN; Rush A; Sayari AJ; Galbusera F; Wilke HJ; Colman M; Phillips FM; An HS; Samartzis D
    Eur Spine J; 2022 Aug; 31(8):2057-2081. PubMed ID: 35347425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. What Are the Applications and Limitations of Artificial Intelligence for Fracture Detection and Classification in Orthopaedic Trauma Imaging? A Systematic Review.
    Langerhuizen DWG; Janssen SJ; Mallee WH; van den Bekerom MPJ; Ring D; Kerkhoffs GMMJ; Jaarsma RL; Doornberg JN
    Clin Orthop Relat Res; 2019 Nov; 477(11):2482-2491. PubMed ID: 31283727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial intelligence and machine learning | applications in musculoskeletal physiotherapy.
    Tack C
    Musculoskelet Sci Pract; 2019 Feb; 39():164-169. PubMed ID: 30502096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding Artificial Intelligence and Predictive Analytics: A Clinically Focused Review of Machine Learning Techniques.
    Cho B; Geng E; Arvind V; Valliani AA; Tang JE; Schwartz J; Dominy C; Cho SK; Kim JS
    JBJS Rev; 2022 Mar; 10(3):. PubMed ID: 35302963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Applications of machine learning in clinical decision support in the omic era].
    Zhao XT; Yang YD; Qu HZ; Fang XD
    Yi Chuan; 2018 Sep; 40(9):693-703. PubMed ID: 30369474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial Intelligence for the Orthopaedic Surgeon: An Overview of Potential Benefits, Limitations, and Clinical Applications.
    Makhni EC; Makhni S; Ramkumar PN
    J Am Acad Orthop Surg; 2021 Mar; 29(6):235-243. PubMed ID: 33323681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Artificial intelligence in orthopaedic and trauma surgery imaging].
    Rohde S; Münnich N
    Orthopadie (Heidelb); 2022 Sep; 51(9):748-756. PubMed ID: 35980460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interpretation and Use of Applied/Operational Machine Learning and Artificial Intelligence in Surgery.
    Douglas MJ; Callcut R; Celi LA; Merchant N
    Surg Clin North Am; 2023 Apr; 103(2):317-333. PubMed ID: 36948721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning in orthopaedic surgery.
    Lalehzarian SP; Gowd AK; Liu JN
    World J Orthop; 2021 Sep; 12(9):685-699. PubMed ID: 34631452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Editorial Commentary: Machine Learning in Orthopaedics: Venturing Into the Valley of Despair.
    Wellington IJ; Cote MP
    Arthroscopy; 2022 Sep; 38(9):2767-2768. PubMed ID: 36064282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The development and deployment of machine learning models.
    Pruneski JA; Williams RJ; Nwachukwu BU; Ramkumar PN; Kiapour AM; Martin RK; Karlsson J; Pareek A
    Knee Surg Sports Traumatol Arthrosc; 2022 Dec; 30(12):3917-3923. PubMed ID: 36083354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial Intelligence in Cardiovascular Medicine: Historical Overview, Current Status, and Future Directions.
    Krajcer Z
    Tex Heart Inst J; 2022 Mar; 49(2):. PubMed ID: 35481866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.