BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 38130714)

  • 1. Immune checkpoint inhibitors as potential therapy for reverting T-cell exhaustion and reverting HIV latency in people living with HIV.
    Benito JM; Restrepo C; García-Foncillas J; Rallón N
    Front Immunol; 2023; 14():1270881. PubMed ID: 38130714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination Immune Checkpoint Blockade Enhances IL-2 and CD107a Production from HIV-Specific T Cells Ex Vivo in People Living with HIV on Antiretroviral Therapy.
    Chiu CY; Chang JJ; Dantanarayana AI; Solomon A; Evans VA; Pascoe R; Gubser C; Trautman L; Fromentin R; Chomont N; McMahon JH; Cameron PU; Rasmussen TA; Lewin SR
    J Immunol; 2022 Jan; 208(1):54-62. PubMed ID: 34853078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression Profile and Biological Role of Immune Checkpoints in Disease Progression of HIV/SIV Infection.
    Sun Y; Xue J
    Viruses; 2022 Mar; 14(3):. PubMed ID: 35336991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The implication of anti-PD-1 therapy in cancer patients for the vaccination against viral and other infectious diseases.
    Retnakumar SV; Chauvin C; Bayry J
    Pharmacol Ther; 2023 May; 245():108399. PubMed ID: 37001736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combination Immune Checkpoint Blockade to Reverse HIV Latency.
    Van der Sluis RM; Kumar NA; Pascoe RD; Zerbato JM; Evans VA; Dantanarayana AI; Anderson JL; Sékaly RP; Fromentin R; Chomont N; Cameron PU; Lewin SR
    J Immunol; 2020 Mar; 204(5):1242-1254. PubMed ID: 31988180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of Immunomodulatory Receptors in the Pathogenesis of HIV Infection: A Therapeutic Opportunity for HIV Cure?
    Chen H; Moussa M; Catalfamo M
    Front Immunol; 2020; 11():1223. PubMed ID: 32714317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immune Checkpoints as the Immune System Regulators and Potential Biomarkers in HIV-1 Infection.
    Sperk M; Domselaar RV; Neogi U
    Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 29987244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-cell transcriptome analysis reveals TOX as a promoting factor for T cell exhaustion and a predictor for anti-PD-1 responses in human cancer.
    Kim K; Park S; Park SY; Kim G; Park SM; Cho JW; Kim DH; Park YM; Koh YW; Kim HR; Ha SJ; Lee I
    Genome Med; 2020 Feb; 12(1):22. PubMed ID: 32111241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immune checkpoint pathways in immunotherapy for head and neck squamous cell carcinoma.
    Mei Z; Huang J; Qiao B; Lam AK
    Int J Oral Sci; 2020 May; 12(1):16. PubMed ID: 32461587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immune Checkpoints, Inhibitors and Radionuclides in Prostate Cancer: Promising Combinatorial Therapy Approach.
    Kgatle MM; Boshomane TMG; Lawal IO; Mokoala KMG; Mokgoro NP; Lourens N; Kairemo K; Zeevaart JR; Vorster M; Sathekge MM
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33921181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4.
    Qin S; Xu L; Yi M; Yu S; Wu K; Luo S
    Mol Cancer; 2019 Nov; 18(1):155. PubMed ID: 31690319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immune checkpoint inhibition as a therapeutic strategy for HIV eradication: current insights and future directions.
    Lee J; Whitney JB
    Curr Opin HIV AIDS; 2024 Jul; 19(4):179-186. PubMed ID: 38747727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immune checkpoint blockade in HIV.
    Gubser C; Chiu C; Lewin SR; Rasmussen TA
    EBioMedicine; 2022 Feb; 76():103840. PubMed ID: 35123267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immune checkpoint inhibitors and cancer immunotherapy by aptamers: an overview.
    Kejamurthy P; Devi KTR
    Med Oncol; 2023 Dec; 41(1):40. PubMed ID: 38158454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immune checkpoints and cancer development: Therapeutic implications and future directions.
    Mehdizadeh S; Bayatipoor H; Pashangzadeh S; Jafarpour R; Shojaei Z; Motallebnezhad M
    Pathol Res Pract; 2021 Jul; 223():153485. PubMed ID: 34022684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Epigenetic Modifications in Inhibitory Immune Checkpoints in Cancer Development and Progression.
    Saleh R; Toor SM; Sasidharan Nair V; Elkord E
    Front Immunol; 2020; 11():1469. PubMed ID: 32760400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting immune checkpoints in anti-neutrophil cytoplasmic antibodies associated vasculitis: the potential therapeutic targets in the future.
    Pan M; Zhao H; Jin R; Leung PSC; Shuai Z
    Front Immunol; 2023; 14():1156212. PubMed ID: 37090741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immune Checkpoint Inhibitors in People Living with HIV/AIDS: Facts and Controversies.
    Castelli V; Lombardi A; Palomba E; Bozzi G; Ungaro R; Alagna L; Mangioni D; Muscatello A; Bandera A; Gori A
    Cells; 2021 Aug; 10(9):. PubMed ID: 34571876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immune checkpoint expression on peripheral cytotoxic lymphocytes in cervical cancer patients: moving beyond the PD-1/PD-L1 axis.
    Solorzano-Ibarra F; Alejandre-Gonzalez AG; Ortiz-Lazareno PC; Bastidas-Ramirez BE; Zepeda-Moreno A; Tellez-Bañuelos MC; Banu N; Carrillo-Garibaldi OJ; Chavira-Alvarado A; Bueno-Topete MR; Del Toro-Arreola S; Haramati J
    Clin Exp Immunol; 2021 Apr; 204(1):78-95. PubMed ID: 33306195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exhaustion of Activated CD8 T Cells Predicts Disease Progression in Primary HIV-1 Infection.
    Hoffmann M; Pantazis N; Martin GE; Hickling S; Hurst J; Meyerowitz J; Willberg CB; Robinson N; Brown H; Fisher M; Kinloch S; Babiker A; Weber J; Nwokolo N; Fox J; Fidler S; Phillips R; Frater J;
    PLoS Pathog; 2016 Jul; 12(7):e1005661. PubMed ID: 27415828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.