These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 38131210)

  • 1. Standalone cell culture microfluidic device-based microphysiological system for automated cell observation and application in nephrotoxicity tests.
    Kimura H; Nakamura H; Goto T; Uchida W; Uozumi T; Nishizawa D; Shinha K; Sakagami J; Doi K
    Lab Chip; 2024 Jan; 24(3):408-421. PubMed ID: 38131210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Development of Microphysiological Systems (MPSs) Based on Microfluidic Technology for Drug Discovery in Japan].
    Kimura H
    Yakugaku Zasshi; 2023; 143(1):39-44. PubMed ID: 36596538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A thermoplastic microfluidic microphysiological system to recapitulate hepatic function and multicellular interactions.
    Bale SS; Manoppo A; Thompson R; Markoski A; Coppeta J; Cain B; Haroutunian N; Newlin V; Spencer A; Azizgolshani H; Lu M; Gosset J; Keegan P; Charest JL
    Biotechnol Bioeng; 2019 Dec; 116(12):3409-3420. PubMed ID: 30963546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pumped and pumpless microphysiological systems to study (nano)therapeutics.
    Lee EJ; Krassin ZL; Abaci HE; Mahler GJ; Esch MB
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023; 15(5):e1911. PubMed ID: 37464464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fitting tissue chips and microphysiological systems into the grand scheme of medicine, biology, pharmacology, and toxicology.
    Watson DE; Hunziker R; Wikswo JP
    Exp Biol Med (Maywood); 2017 Oct; 242(16):1559-1572. PubMed ID: 29065799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perfusion culture of endothelial cells under shear stress on microporous membrane in a pressure-driven microphysiological system.
    Sugiura S; Shin K; Kanamori T
    J Biosci Bioeng; 2023 Jan; 135(1):79-85. PubMed ID: 36253250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluidic circuit board with modular sensor and valves enables stand-alone, tubeless microfluidic flow control in organs-on-chips.
    Vivas A; van den Berg A; Passier R; Odijk M; van der Meer AD
    Lab Chip; 2022 Mar; 22(6):1231-1243. PubMed ID: 35178541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microphysiological systems for human aging research.
    Park S; Laskow TC; Chen J; Guha P; Dawn B; Kim DH
    Aging Cell; 2024 Mar; 23(3):e14070. PubMed ID: 38180277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microphysiological Systems to Assess Nonclinical Toxicity.
    Van Ness KP; Chang SY; Weber EJ; Zumpano D; Eaton DL; Kelly EJ
    Curr Protoc Toxicol; 2017 Aug; 73():14.18.1-14.18.28. PubMed ID: 28777442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing the reproducibility in using a liver microphysiological system for assaying drug toxicity, metabolism, and accumulation.
    Rubiano A; Indapurkar A; Yokosawa R; Miedzik A; Rosenzweig B; Arefin A; Moulin CM; Dame K; Hartman N; Volpe DA; Matta MK; Hughes DJ; Strauss DG; Kostrzewski T; Ribeiro AJS
    Clin Transl Sci; 2021 May; 14(3):1049-1061. PubMed ID: 33382907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Kinetic Pump Integrated Microfluidic Plate (KIM-Plate) with High Usability for Cell Culture-Based Multiorgan Microphysiological Systems.
    Shinha K; Nihei W; Nakamura H; Goto T; Kawanishi T; Ishida N; Yamazaki N; Imakura Y; Mima S; Inamura K; Arakawa H; Nishikawa M; Kato Y; Sakai Y; Kimura H
    Micromachines (Basel); 2021 Aug; 12(9):. PubMed ID: 34577652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vascular microphysiological systems.
    Shelton SE
    Curr Opin Hematol; 2024 May; 31(3):155-161. PubMed ID: 38236999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical glucose sensor for microfluidic cell culture systems.
    Fuchs S; Rieger V; Tjell AØ; Spitz S; Brandauer K; Schaller-Ammann R; Feiel J; Ertl P; Klimant I; Mayr T
    Biosens Bioelectron; 2023 Oct; 237():115491. PubMed ID: 37413826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Pharma challenges to adoption of microphysiological system in drug research and development, especially safety assessment].
    Naraoka H
    Nihon Yakurigaku Zasshi; 2023; 158(2):187-192. PubMed ID: 36858504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opportunities and challenges in the wider adoption of liver and interconnected microphysiological systems.
    Hughes DJ; Kostrzewski T; Sceats EL
    Exp Biol Med (Maywood); 2017 Oct; 242(16):1593-1604. PubMed ID: 28504617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UniChip enables long-term recirculating unidirectional perfusion with gravity-driven flow for microphysiological systems.
    Wang YI; Shuler ML
    Lab Chip; 2018 Aug; 18(17):2563-2574. PubMed ID: 30046784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acrylic-based culture plate format perfusion device to establish liver endothelial-epithelial interface.
    McDuffie D; Alver CG; Suthar B; Helm M; Oliver D; Burgess RA; Barr D; Thomas E; Agarwal A
    Lab Chip; 2023 Jun; 23(13):3106-3119. PubMed ID: 37313651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microphysiological Systems: Stakeholder Challenges to Adoption in Drug Development.
    Hargrove-Grimes P; Low LA; Tagle DA
    Cells Tissues Organs; 2022; 211(3):269-281. PubMed ID: 34380142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patient-Derived Microphysiological Systems for Precision Medicine.
    Ko J; Song J; Choi N; Kim HN
    Adv Healthc Mater; 2024 Mar; 13(7):e2303161. PubMed ID: 38010253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging microphysiological systems: a review.
    Peel S; Jackman M
    Am J Physiol Cell Physiol; 2021 May; 320(5):C669-C680. PubMed ID: 33356942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.