These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 38131514)

  • 1. A quantitative framework for patient-specific collision detection in proton therapy.
    Northway SK; Vallejo BM; Liu L; Hansen EE; Tang S; Mah D; MacEwan IJ; Urbanic JJ; Chang C
    J Appl Clin Med Phys; 2024 Apr; 25(4):e14247. PubMed ID: 38131514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A clinically feasible method for the detection of potential collision in proton therapy.
    Zou W; Lin H; Plastaras JP; Wang H; Bui V; Vapiwala N; McDonough J; Tochner Z; Both S
    Med Phys; 2012 Nov; 39(11):7094-101. PubMed ID: 23127100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a 3D patient-specific collision avoidance virtual framework for half-gantry proton therapy system.
    Dougherty JM; Whitaker TJ; Mundy DW; Tryggestad EJ; Beltran CJ
    J Appl Clin Med Phys; 2022 Feb; 23(2):e13496. PubMed ID: 34890094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel, end-to-end framework for avoiding collisions between the patient's body and gantry in proton therapy.
    Yamazaki Y; Terunuma T; Kato T; Komori S; Sakae T
    Med Phys; 2023 Nov; 50(11):6684-6692. PubMed ID: 37816130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel approach to Verify air gap and SSD for proton radiotherapy using surface imaging.
    Wang X; Ma C; Davis R; Parikh RR; Jabbour SK; Haffty BG; Yue NJ; Nie K; Zhang Y
    Radiat Oncol; 2019 Dec; 14(1):224. PubMed ID: 31829246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and clinical implementation of eclipse scripting-based automated patient-specific collision avoidance software.
    Mann TD; Ploquin NP; Gill WR; Thind KS
    J Appl Clin Med Phys; 2019 Sep; 20(9):12-19. PubMed ID: 31282083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of penumbra sharpening and scattering by adaptive aperture for a compact pencil beam scanning proton therapy system.
    Grewal HS; Ahmad S; Jin H
    Med Phys; 2021 Apr; 48(4):1508-1519. PubMed ID: 33580550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic measurement of air gap for proton therapy using orthogonal x-ray imaging with radiopaque wires.
    Ramesh P; Song W; Cao H; Zhao Y; Parikh R; Weiner J; Wang X; Nie K; Yue N; Zhang Y
    J Appl Clin Med Phys; 2019 Jan; 20(1):356-360. PubMed ID: 30556259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dosimetric comparison between proton and photon beams in the moving gap region in cranio-spinal irradiation (CSI).
    Cheng CW; Das IJ; Srivastava SP; Zhao L; Wolanski M; Simmons J; Johnstone PA; Buchsbaum JC
    Acta Oncol; 2013 Apr; 52(3):553-60. PubMed ID: 22554342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Technical note: Does the greater power of pencil beam scanning reduce the need for a proton gantry? A study of head-and-neck and brain tumors.
    Yan S; Depauw N; Adams J; Gorissen BL; Shih HA; Flanz J; Bortfeld T; Lu HM
    Med Phys; 2022 Feb; 49(2):813-824. PubMed ID: 34919736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collision prediction software for radiotherapy treatments.
    Padilla L; Pearson EA; Pelizzari CA
    Med Phys; 2015 Nov; 42(11):6448-56. PubMed ID: 26520734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The development and verification of a highly accurate collision prediction model for automated noncoplanar plan delivery.
    Yu VY; Tran A; Nguyen D; Cao M; Ruan D; Low DA; Sheng K
    Med Phys; 2015 Nov; 42(11):6457-67. PubMed ID: 26520735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Technical note: A collision prediction tool using Blender.
    Guyer G; Mueller S; Wyss Y; Bertholet J; Schmid R; Stampanoni MFM; Manser P; Fix MK
    J Appl Clin Med Phys; 2023 Nov; 24(11):e14165. PubMed ID: 37782250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of various range shifters for proton pencil beam scanning radiotherapy.
    Lin H; Shi C; Huang S; Shen J; Kang M; Chen Q; Zhai H; McDonough J; Tochner Z; Deville C; Simone CB; Both S
    Radiat Oncol; 2021 Aug; 16(1):146. PubMed ID: 34362396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A virtual simulator designed for collision prevention in proton therapy.
    Jung H; Kum O; Han Y; Park HC; Kim JS; Choi DH
    Med Phys; 2015 Oct; 42(10):6021-7. PubMed ID: 26429277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intensity modulated proton arc therapy via geometry-based energy selection for ependymoma.
    Cao W; Li Y; Zhang X; Poenisch F; Yepes P; Sahoo N; Grosshans D; McGovern S; Gunn GB; Frank SJ; Zhu XR
    J Appl Clin Med Phys; 2023 Jul; 24(7):e13954. PubMed ID: 36913484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvements in pencil beam scanning proton therapy dose calculation accuracy in brain tumor cases with a commercial Monte Carlo algorithm.
    Widesott L; Lorentini S; Fracchiolla F; Farace P; Schwarz M
    Phys Med Biol; 2018 Jul; 63(14):145016. PubMed ID: 29726402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying the effect of air gap, depth, and range shifter thickness on TPS dosimetric accuracy in superficial PBS proton therapy.
    Shirey RJ; Wu HT
    J Appl Clin Med Phys; 2018 Jan; 19(1):164-173. PubMed ID: 29239528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Commissioning and validation of a novel commercial TPS for ocular proton therapy.
    Wulff J; Koska B; Heufelder J; Janson M; Bäcker CM; Siregar H; Behrends C; Bäumer C; Foerster A; Bechrakis NE; Timmermann B
    Med Phys; 2023 Jan; 50(1):365-379. PubMed ID: 36195575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward automatic beam angle selection for pencil-beam scanning proton liver treatments: A deep learning-based approach.
    Kaderka R; Liu KC; Liu L; VanderStraeten R; Liu TL; Lee KM; Tu YE; MacEwan I; Simpson D; Urbanic J; Chang C
    Med Phys; 2022 Jul; 49(7):4293-4304. PubMed ID: 35488864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.