These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 38131793)
1. Enhancing the Study of Quantal Exocytotic Events: Combining Diamond Multi-Electrode Arrays with Amperometric PEak Analysis (APE) an Automated Analysis Code. Tomagra G; Re A; Varzi V; Aprà P; Britel A; Franchino C; Sturari S; Amine NH; Westerink RHS; Carabelli V; Picollo F Biosensors (Basel); 2023 Dec; 13(12):. PubMed ID: 38131793 [TBL] [Abstract][Full Text] [Related]
2. Quantal Release of Dopamine and Action Potential Firing Detected in Midbrain Neurons by Multifunctional Diamond-Based Microarrays. Tomagra G; Picollo F; Battiato A; Picconi B; De Marchis S; Pasquarelli A; Olivero P; Marcantoni A; Calabresi P; Carbone E; Carabelli V Front Neurosci; 2019; 13():288. PubMed ID: 31024230 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous multisite detection of quantal release from PC12 cells using micro graphitic-diamond multi electrode arrays. Tomagra G; Franchino C; Pasquarelli A; Carbone E; Olivero P; Carabelli V; Picollo F Biophys Chem; 2019 Oct; 253():106241. PubMed ID: 31398633 [TBL] [Abstract][Full Text] [Related]
4. Microelectrode Arrays of Diamond-Insulated Graphitic Channels for Real-Time Detection of Exocytotic Events from Cultured Chromaffin Cells and Slices of Adrenal Glands. Picollo F; Battiato A; Bernardi E; Marcantoni A; Pasquarelli A; Carbone E; Olivero P; Carabelli V Anal Chem; 2016 Aug; 88(15):7493-9. PubMed ID: 27376596 [TBL] [Abstract][Full Text] [Related]
5. Estimating amperometric spike parameters resulting from quantal exocytosis using curve fitting seeded by a matched-filter algorithm. Balaji Ramachandran S; Gillis KD J Neurosci Methods; 2019 Jan; 311():360-368. PubMed ID: 30253199 [TBL] [Abstract][Full Text] [Related]
6. Methodologies for Detecting Quantal Exocytosis in Adrenal Chromaffin Cells Through Diamond-Based MEAs. Tomagra G; Franchino C; Carbone E; Marcantoni A; Pasquarelli A; Picollo F; Carabelli V Methods Mol Biol; 2023; 2565():213-221. PubMed ID: 36205897 [TBL] [Abstract][Full Text] [Related]
7. Characterization of exocytotic events from single PC12 cells: amperometric studies in native PC12h, DA-loaded PC12h and bovine adrenal chromaffin cells. Sasakawa N; Murayama N; Kumakura K Cell Mol Neurobiol; 2005 Jun; 25(3-4):777-87. PubMed ID: 16075391 [TBL] [Abstract][Full Text] [Related]
8. Heterogeneous distribution of exocytotic microdomains in adrenal chromaffin cells resolved by high-density diamond ultra-microelectrode arrays. Gosso S; Turturici M; Franchino C; Colombo E; Pasquarelli A; Carbone E; Carabelli V J Physiol; 2014 Aug; 592(15):3215-30. PubMed ID: 24879870 [TBL] [Abstract][Full Text] [Related]
9. A matched-filter algorithm to detect amperometric spikes resulting from quantal secretion. Balaji Ramachandran S; Gillis KD J Neurosci Methods; 2018 Jan; 293():338-346. PubMed ID: 29061344 [TBL] [Abstract][Full Text] [Related]
10. Comparison of Disk and Nanotip Electrodes for Measurement of Single-Cell Amperometry during Exocytotic Release. Gu C; Zhang X; Ewing AG Anal Chem; 2020 Aug; 92(15):10268-10273. PubMed ID: 32628468 [TBL] [Abstract][Full Text] [Related]
11. Quantitative investigations of amperometric spike feet suggest different controlling factors of the fusion pore in exocytosis at chromaffin cells. Amatore C; Arbault S; Bonifas I; Guille M Biophys Chem; 2009 Aug; 143(3):124-31. PubMed ID: 19501951 [TBL] [Abstract][Full Text] [Related]
12. Improved surface-patterned platinum microelectrodes for the study of exocytotic events. Berberian K; Kisler K; Fang Q; Lindau M Anal Chem; 2009 Nov; 81(21):8734-40. PubMed ID: 19780579 [TBL] [Abstract][Full Text] [Related]
14. Exploiting Microelectrode Geometry for Comprehensive Detection of Individual Exocytosis Events at Single Cells. De Alwis AC; Denison JD; Shah R; McCarty GS; Sombers LA ACS Sens; 2023 Aug; 8(8):3187-3194. PubMed ID: 37552870 [TBL] [Abstract][Full Text] [Related]
15. Electrochemical imaging of fusion pore openings by electrochemical detector arrays. Hafez I; Kisler K; Berberian K; Dernick G; Valero V; Yong MG; Craighead HG; Lindau M Proc Natl Acad Sci U S A; 2005 Sep; 102(39):13879-84. PubMed ID: 16172395 [TBL] [Abstract][Full Text] [Related]
16. Altered exocytosis in chromaffin cells from mouse models of neurodegenerative diseases. de Diego AMG; García AG Acta Physiol (Oxf); 2018 Oct; 224(2):e13090. PubMed ID: 29742321 [TBL] [Abstract][Full Text] [Related]
17. A rapid exocytosis mode in chromaffin cells with a neuronal phenotype. Ardiles AO; Maripillán J; Lagos VL; Toro R; Mora IG; Villarroel L; Alés E; Borges R; Cárdenas AM J Neurochem; 2006 Oct; 99(1):29-41. PubMed ID: 16889641 [TBL] [Abstract][Full Text] [Related]
18. Relationship between amperometric pre-spike feet and secretion granule composition in chromaffin cells: an overview. Amatore C; Arbault S; Bonifas I; Guille M; Lemaître F; Verchier Y Biophys Chem; 2007 Sep; 129(2-3):181-9. PubMed ID: 17587484 [TBL] [Abstract][Full Text] [Related]
19. Microwell device for targeting single cells to electrochemical microelectrodes for high-throughput amperometric detection of quantal exocytosis. Liu X; Barizuddin S; Shin W; Mathai CJ; Gangopadhyay S; Gillis KD Anal Chem; 2011 Apr; 83(7):2445-51. PubMed ID: 21355543 [TBL] [Abstract][Full Text] [Related]
20. A new diamond biosensor with integrated graphitic microchannels for detecting quantal exocytic events from chromaffin cells. Picollo F; Gosso S; Vittone E; Pasquarelli A; Carbone E; Olivero P; Carabelli V Adv Mater; 2013 Sep; 25(34):4696-700. PubMed ID: 23847004 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]