These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 38131965)
1. Cryogel Scaffolds for Tissue-Engineering: Advances and Challenges for Effective Bone and Cartilage Regeneration. Carriero VC; Di Muzio L; Petralito S; Casadei MA; Paolicelli P Gels; 2023 Dec; 9(12):. PubMed ID: 38131965 [TBL] [Abstract][Full Text] [Related]
2. Hyaluronic Acid-Based Shape-Memory Cryogel Scaffolds for Focal Cartilage Defect Repair. He T; Li B; Colombani T; Joshi-Navare K; Mehta S; Kisiday J; Bencherif SA; Bajpayee AG Tissue Eng Part A; 2021 Jun; 27(11-12):748-760. PubMed ID: 33108972 [TBL] [Abstract][Full Text] [Related]
3. Rational design of gelatin/nanohydroxyapatite cryogel scaffolds for bone regeneration by introducing chemical and physical cues to enhance osteogenesis of bone marrow mesenchymal stem cells. Shalumon KT; Liao HT; Kuo CY; Wong CB; Li CJ; P A M; Chen JP Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109855. PubMed ID: 31500067 [TBL] [Abstract][Full Text] [Related]
4. 3D ingrowth of bovine articular chondrocytes in biodegradable cryogel scaffolds for cartilage tissue engineering. Bölgen N; Yang Y; Korkusuz P; Güzel E; El Haj AJ; Pişkin E J Tissue Eng Regen Med; 2011 Nov; 5(10):770-9. PubMed ID: 22002920 [TBL] [Abstract][Full Text] [Related]
5. Cryogel scaffolds from patient-specific 3D-printed molds for personalized tissue-engineered bone regeneration in pediatric cleft-craniofacial defects. Hixon KR; Melvin AM; Lin AY; Hall AF; Sell SA J Biomater Appl; 2017 Nov; 32(5):598-611. PubMed ID: 28980856 [TBL] [Abstract][Full Text] [Related]
6. [The research advances of three dimensional porous cryogel for tissue engineering]. Liu S; Xiao J; Chen K; Xiao W; Li B Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Apr; 38(2):393-398. PubMed ID: 33913301 [TBL] [Abstract][Full Text] [Related]
7. A comprehensive review of cryogels and their roles in tissue engineering applications. Hixon KR; Lu T; Sell SA Acta Biomater; 2017 Oct; 62():29-41. PubMed ID: 28851666 [TBL] [Abstract][Full Text] [Related]
8. Treatment of osteochondral defects in the rabbit's knee joint by implantation of allogeneic mesenchymal stem cells in fibrin clots. Berninger MT; Wexel G; Rummeny EJ; Imhoff AB; Anton M; Henning TD; Vogt S J Vis Exp; 2013 May; (75):e4423. PubMed ID: 23728213 [TBL] [Abstract][Full Text] [Related]
9. Tissue Engineering Scaffolds Fabricated in Dissolvable 3D-Printed Molds for Patient-Specific Craniofacial Bone Regeneration. de la Lastra AA; Hixon KR; Aryan L; Banks AN; Lin AY; Hall AF; Sell SA J Funct Biomater; 2018 Jul; 9(3):. PubMed ID: 30042357 [TBL] [Abstract][Full Text] [Related]
10. Evaluating potential of tissue-engineered cryogels and chondrocyte derived exosomes in articular cartilage repair. Nikhil A; Kumar A Biotechnol Bioeng; 2022 Feb; 119(2):605-625. PubMed ID: 34723385 [TBL] [Abstract][Full Text] [Related]
11. A Biomimicking Polymeric Cryogel Scaffold for Repair of Critical-Sized Cranial Defect in a Rat Model. Liu C; Lin C; Feng X; Wu Z; Lin G; Quan C; Chen B; Zhang C Tissue Eng Part A; 2019 Dec; 25(23-24):1591-1604. PubMed ID: 30950322 [TBL] [Abstract][Full Text] [Related]
12. Efficient regeneration of rat calvarial defect with gelatin-hydroxyapatite composite cryogel. Zhang Y; Leng H; Du Z; Huang Y; Liu X; Zhao Z; Zhang X; Cai Q; Yang X Biomed Mater; 2020 Sep; 15(6):065005. PubMed ID: 32422614 [TBL] [Abstract][Full Text] [Related]
13. Suppressing mesenchymal stem cell hypertrophy and endochondral ossification in 3D cartilage regeneration with nanofibrous poly(l-lactic acid) scaffold and matrilin-3. Liu Q; Wang J; Chen Y; Zhang Z; Saunders L; Schipani E; Chen Q; Ma PX Acta Biomater; 2018 Aug; 76():29-38. PubMed ID: 29940371 [TBL] [Abstract][Full Text] [Related]
14. Hydroxyapatite nanowire composited gelatin cryogel with improved mechanical properties and cell migration for bone regeneration. Gu L; Zhang J; Li L; Du Z; Cai Q; Yang X Biomed Mater; 2019 Apr; 14(4):045001. PubMed ID: 30939454 [TBL] [Abstract][Full Text] [Related]
15. Extracellular matrix-based cryogels for cartilage tissue engineering. Han ME; Kim SH; Kim HD; Yim HG; Bencherif SA; Kim TI; Hwang NS Int J Biol Macromol; 2016 Dec; 93(Pt B):1410-1419. PubMed ID: 27185069 [TBL] [Abstract][Full Text] [Related]
16. Investigation of synergistic effects of inductive and conductive factors in gelatin-based cryogels for bone tissue engineering. Liao HT; Shalumon KT; Chang KH; Sheu C; Chen JP J Mater Chem B; 2016 Mar; 4(10):1827-1841. PubMed ID: 32263060 [TBL] [Abstract][Full Text] [Related]
17. Preparation of Gelatin and Gelatin/Hyaluronic Acid Cryogel Scaffolds for the 3D Culture of Mesothelial Cells and Mesothelium Tissue Regeneration. Kao HH; Kuo CY; Chen KS; Chen JP Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31547444 [TBL] [Abstract][Full Text] [Related]
18. Integrated Piezoelectric/Conductive Composite Cryogel Creates Electroactive Microenvironment for Enhanced Bone Regeneration. Zheng T; Pang Y; Zhang D; Wang Y; Zhang X; Leng H; Yu Y; Yang X; Cai Q Adv Healthc Mater; 2023 Oct; 12(26):e2300927. PubMed ID: 37262422 [TBL] [Abstract][Full Text] [Related]
19. Embedded 3D Printing of Cryogel-Based Scaffolds. Bilici Ç; Altunbek M; Afghah F; Tatar AG; Koç B ACS Biomater Sci Eng; 2023 Aug; 9(8):5028-5038. PubMed ID: 37463481 [TBL] [Abstract][Full Text] [Related]
20. Comparative study of gelatin cryogels reinforced with hydroxyapatites with different morphologies and interfacial bonding. Gu L; Zhang Y; Zhang L; Huang Y; Zuo D; Cai Q; Yang X Biomed Mater; 2020 Mar; 15(3):035012. PubMed ID: 32031987 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]