BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 38131970)

  • 1. Thermoresponsive Alginate-Graft-pNIPAM/Methyl Cellulose 3D-Printed Scaffolds Promote Osteogenesis In Vitro.
    Gialouri A; Saravanou SF; Loukelis K; Chatzinikolaidou M; Pasparakis G; Bouropoulos N
    Gels; 2023 Dec; 9(12):. PubMed ID: 38131970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of 3-dimensional Bioprinting Alginate/Gelatin Hydrogel Scaffold Extract on Proliferation and Differentiation of Human Dental Pulp Stem Cells.
    Yu H; Zhang X; Song W; Pan T; Wang H; Ning T; Wei Q; Xu HHK; Wu B; Ma D
    J Endod; 2019 Jun; 45(6):706-715. PubMed ID: 31056297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dually crosslinked injectable alginate-based graft copolymer thermoresponsive hydrogels as 3D printing bioinks for cell spheroid growth and release.
    Saravanou SF; Ioannidis K; Dimopoulos A; Paxinou A; Kounelaki F; Varsami SM; Tsitsilianis C; Papantoniou I; Pasparakis G
    Carbohydr Polym; 2023 Jul; 312():120790. PubMed ID: 37059530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts.
    Gonzalez-Fernandez T; Tenorio AJ; Campbell KT; Silva EA; Leach JK
    Tissue Eng Part A; 2021 Sep; 27(17-18):1168-1181. PubMed ID: 33218292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manufacturing of self-standing multi-layered 3D-bioprinted alginate-hyaluronate constructs by controlling the cross-linking mechanisms for tissue engineering applications.
    Janarthanan G; Kim JH; Kim I; Lee C; Chung EJ; Noh I
    Biofabrication; 2022 May; 14(3):. PubMed ID: 35504259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D-printed bioactive and biodegradable hydrogel scaffolds of alginate/gelatin/cellulose nanocrystals for tissue engineering.
    Dutta SD; Hexiu J; Patel DK; Ganguly K; Lim KT
    Int J Biol Macromol; 2021 Jan; 167():644-658. PubMed ID: 33285198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alginate dependent changes of physical properties in 3D bioprinted cell-laden porous scaffolds affect cell viability and cell morphology.
    Zhang J; Wehrle E; Vetsch JR; Paul GR; Rubert M; Müller R
    Biomed Mater; 2019 Sep; 14(6):065009. PubMed ID: 31426033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A smart thermoresponsive adsorption system for efficient copper ion removal based on alginate-g-poly(N-isopropylacrylamide) graft copolymer.
    Liu M; Wen Y; Song X; Zhu JL; Li J
    Carbohydr Polym; 2019 Sep; 219():280-289. PubMed ID: 31151526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of electrospray fabrication of stem cell-embedded alginate-gelatin microspheres and their assembly in 3D-printed poly(ε-caprolactone) scaffold for cartilage tissue engineering.
    Xu Y; Peng J; Richards G; Lu S; Eglin D
    J Orthop Translat; 2019 Jul; 18():128-141. PubMed ID: 31508316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfated carboxymethyl cellulose and carboxymethyl κ-carrageenan immobilization on 3D-printed poly-ε-caprolactone scaffolds differentially promote pre-osteoblast proliferation and osteogenic activity.
    Abbasi-Ravasjani S; Seddiqi H; Moghaddaszadeh A; Ghiasvand ME; Jin J; Oliaei E; Bacabac RG; Klein-Nulend J
    Front Bioeng Biotechnol; 2022; 10():957263. PubMed ID: 36213076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioprinting of alginate-carboxymethyl chitosan scaffolds for enamel tissue engineering
    Mohabatpour F; Duan X; Yazdanpanah Z; Tabil XL; Lobanova L; Zhu N; Papagerakis S; Chen X; Papagerakis P
    Biofabrication; 2022 Dec; 15(1):. PubMed ID: 36583240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D printing of complicated GelMA-coated Alginate/Tri-calcium silicate scaffold for accelerated bone regeneration.
    Beheshtizadeh N; Farzin A; Rezvantalab S; Pazhouhnia Z; Lotfibakhshaiesh N; Ai J; Noori A; Azami M
    Int J Biol Macromol; 2023 Feb; 229():636-653. PubMed ID: 36586652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermoresponsive Poly(
    Mendoza DJ; Ayurini M; Browne C; Raghuwanshi VS; Simon GP; Hooper JF; Garnier G
    Biomacromolecules; 2022 Apr; 23(4):1610-1621. PubMed ID: 35041381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering.
    Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R
    Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced osteogenic activity by MC3T3-E1 pre-osteoblasts on chemically surface-modified poly(ε-caprolactone) 3D-printed scaffolds compared to RGD immobilized scaffolds.
    Zamani Y; Mohammadi J; Amoabediny G; Visscher DO; Helder MN; Zandieh-Doulabi B; Klein-Nulend J
    Biomed Mater; 2018 Nov; 14(1):015008. PubMed ID: 30421722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refined control of thermoresponsive swelling/deswelling and drug release properties of poly(N-isopropylacrylamide) hydrogels using hydrophilic polymer crosslinkers.
    Kim S; Lee K; Cha C
    J Biomater Sci Polym Ed; 2016 Dec; 27(17):1698-1711. PubMed ID: 27573586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of Thermoresponsive Chitosan-
    Zaharia MM; Bucatariu F; Karayianni M; Lotos ED; Mihai M; Pispas S
    Polymers (Basel); 2024 May; 16(10):. PubMed ID: 38794509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of maleic acid-propylene diepoxide hydrogel for 3D printing application for flexible tissue engineering scaffold with high resolution by end capping and graft polymerization.
    Tran HN; Kim IG; Kim JH; Chung EJ; Noh I
    Biomater Res; 2022 Dec; 26(1):75. PubMed ID: 36494708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ mineralization of nano-hydroxyapatite on bifunctional cellulose nanofiber/polyvinyl alcohol/sodium alginate hydrogel using 3D printing.
    Abouzeid RE; Khiari R; Salama A; Diab M; Beneventi D; Dufresne A
    Int J Biol Macromol; 2020 Oct; 160():538-547. PubMed ID: 32470581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning the Properties of PNIPAm-Based Hydrogel Scaffolds for Cartilage Tissue Engineering.
    Rana MM; De la Hoz Siegler H
    Polymers (Basel); 2021 Sep; 13(18):. PubMed ID: 34578055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.