BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 38131970)

  • 21. Fabrication and Evaluation of Alginate/Bacterial Cellulose Nanocrystals-Chitosan-Gelatin Composite Scaffolds.
    Li Z; Chen X; Bao C; Liu C; Liu C; Li D; Yan H; Lin Q
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443588
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Poly(N-isopropylacrylamide) (PNIPAM)-grafted gelatin as thermoresponsive three-dimensional artificial extracellular matrix: molecular and formulation parameters vs. cell proliferation potential.
    Ohya S; Matsuda T
    J Biomater Sci Polym Ed; 2005; 16(7):809-27. PubMed ID: 16128290
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermoresponsive behavior of sodium alginate grafted with poly(N-isopropylacrylamide) in aqueous media.
    Ciocoiu ON; Staikos G; Vasile C
    Carbohydr Polym; 2018 Mar; 184():118-126. PubMed ID: 29352902
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D Bioprinting of Highly Thixotropic Alginate/Methylcellulose Hydrogel with Strong Interface Bonding.
    Li H; Tan YJ; Leong KF; Li L
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):20086-20097. PubMed ID: 28530091
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bio-ink properties and printability for extrusion printing living cells.
    Chung JHY; Naficy S; Yue Z; Kapsa R; Quigley A; Moulton SE; Wallace GG
    Biomater Sci; 2013 Jul; 1(7):763-773. PubMed ID: 32481829
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of 3D printing and
    Ketabat F; Maris T; Duan X; Yazdanpanah Z; Kelly ME; Badea I; Chen X
    Front Bioeng Biotechnol; 2023; 11():1161804. PubMed ID: 37304145
    [No Abstract]   [Full Text] [Related]  

  • 27. Extrusion Printed Silk Fibroin Scaffolds with Post-mineralized Calcium Phosphate as a Bone Structural Material.
    Shi R; Cai X; He G; Guan J; Liu Y; Lu H; Mao Z; Li Y; Guo H; Hai Y
    Int J Bioprint; 2022; 8(4):596. PubMed ID: 36483751
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigating the effect of sterilisation methods on the physical properties and cytocompatibility of methyl cellulose used in combination with alginate for 3D-bioplotting of chondrocytes.
    Hodder E; Duin S; Kilian D; Ahlfeld T; Seidel J; Nachtigall C; Bush P; Covill D; Gelinsky M; Lode A
    J Mater Sci Mater Med; 2019 Jan; 30(1):10. PubMed ID: 30610462
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D-Printed composite scaffolds based on poly(ε-caprolactone) filled with poly(glutamic acid)-modified cellulose nanocrystals for improved bone tissue regeneration.
    Averianov I; Stepanova M; Solomakha O; Gofman I; Serdobintsev M; Blum N; Kaftuirev A; Baulin I; Nashchekina J; Lavrentieva A; Vinogradova T; Korzhikov-Vlakh V; Korzhikova-Vlakh E
    J Biomed Mater Res B Appl Biomater; 2022 Nov; 110(11):2422-2437. PubMed ID: 35618683
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Harnessing the Interplay of Triple Cross-Linked Hydrogels toward Multiresponsive Alginate-Based Injectable Gels for 3D Printing Bioapplications.
    Saravanou SF; Tsitsilianis C; Pasparakis G
    ACS Macro Lett; 2023 Dec; 12(12):1614-1622. PubMed ID: 37956439
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [CYTOCOMPATIBILITY AND PREPARATION OF BONE TISSUE ENGINEERING SCAFFOLD BY COMBINING LOW TEMPERATURE THREE DIMENSIONAL PRINTING AND VACUUM FREEZE-DRYING TECHNIQUES].
    Li D; Zhang Z; Zheng C; Zhao B; Sun K; Nian Z; Zhang X; Li R; Li H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Mar; 30(3):292-7. PubMed ID: 27281872
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enzymatically gellable gelatin improves nano-hydroxyapatite-alginate microcapsule characteristics for modular bone tissue formation.
    Firouzi N; Baradar Khoshfetrat A; Kazemi D
    J Biomed Mater Res A; 2020 Feb; 108(2):340-350. PubMed ID: 31618526
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cold and Hot Gelling of Alginate-graft-PNIPAM: a Schizophrenic Behavior Induced by Potassium Salts.
    Guo H; de Magalhaes Goncalves M; Ducouret G; Hourdet D
    Biomacromolecules; 2018 Feb; 19(2):576-587. PubMed ID: 29284259
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A facile way to construct Sr-doped apatite coating on the surface of 3D printed scaffolds to improve osteogenic effect.
    Chen S; Wang Y; Ma J
    J Biomater Appl; 2022 Aug; 37(2):344-354. PubMed ID: 35400209
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Collagen and nano-hydroxyapatite interactions in alginate-based microcapsule provide an appropriate osteogenic microenvironment for modular bone tissue formation.
    Hassani A; Khoshfetrat AB; Rahbarghazi R; Sakai S
    Carbohydr Polym; 2022 Feb; 277():118807. PubMed ID: 34893227
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of 3D Printed pNIPAM-Chitosan Scaffolds for Dentoalveolar Tissue Engineering.
    Salar Amoli M; Anand R; EzEldeen M; Geris L; Jacobs R; Bloemen V
    Gels; 2024 Feb; 10(2):. PubMed ID: 38391470
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D Printing Assisted Fabrication of Copper-Silver Mesoporous Bioactive Glass Nanoparticles Reinforced Sodium Alginate/Poly(vinyl alcohol) Based Composite Scaffolds: Designed for Skin Tissue Engineering.
    Ahmed S; Hussain R; Khan A; Batool SA; Mughal A; Nawaz MH; Irfan M; Wadood A; Avcu E; Rehman MAU
    ACS Appl Bio Mater; 2023 Nov; 6(11):5052-5066. PubMed ID: 37857344
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Long-term stability, high strength, and 3D printable alginate hydrogel for cartilage tissue engineering application.
    Chu Y; Huang L; Hao W; Zhao T; Zhao H; Yang W; Xie X; Qian L; Chen Y; Dai J
    Biomed Mater; 2021 Sep; 16(6):. PubMed ID: 34507313
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis, Characterization and Application of Thermoresponsive Polyhydroxyalkanoate-graft-Poly(N-isopropylacrylamide).
    Ma YM; Wei DX; Yao H; Wu LP; Chen GQ
    Biomacromolecules; 2016 Aug; 17(8):2680-90. PubMed ID: 27350125
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.