BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 38131970)

  • 41. Evaluation of the osteogenic potential of rat adipose-derived stem cells with different polycaprolactone/alginate-based nanofibrous scaffolds: an
    Hany E; Yahia S; Elsherbeny MF; Salama NM; Ateia IM; Abou El-Khier NT; El-Sherbiny I; Abou Elkhier MT
    Stem Cell Investig; 2020; 7():14. PubMed ID: 32964007
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Duration of electrochemical deposition affects the morphology of hydroxyapatite coatings on 3D-printed titanium scaffold as well as the functions of adhered MC3T3-E1 cells.
    Zhu J; Sun HH; Wo J; Xu FH; Lu WQ; Deng B; Zhu YY; Yuan F
    J Orthop Sci; 2020 Jul; 25(4):708-714. PubMed ID: 31607516
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Poly(3-hydroxybutyrate)/hydroxyapatite/alginate scaffolds seeded with mesenchymal stem cells enhance the regeneration of critical-sized bone defect.
    Volkov AV; Muraev AA; Zharkova II; Voinova VV; Akoulina EA; Zhuikov VA; Khaydapova DD; Chesnokova DV; Menshikh KA; Dudun AA; Makhina TK; Bonartseva GA; Asfarov TF; Stamboliev IA; Gazhva YV; Ryabova VM; Zlatev LH; Ivanov SY; Shaitan KV; Bonartsev AP
    Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():110991. PubMed ID: 32994018
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nano-SiO
    Chen X; Sun L; Wang H; Cao S; Shang T; Yan H; Lin Q
    Colloids Surf B Biointerfaces; 2023 Aug; 228():113413. PubMed ID: 37343505
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 3D Printing Type 1 Bovine Collagen Scaffolds for Tissue Engineering Applications-Physicochemical Characterization and In Vitro Evaluation.
    Nayak VV; Tovar N; Khan D; Pereira AC; Mijares DQ; Weck M; Durand A; Smay JE; Torroni A; Coelho PG; Witek L
    Gels; 2023 Aug; 9(8):. PubMed ID: 37623094
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A 3D-Printed Polycaprolactone/Marine Collagen Scaffold Reinforced with Carbonated Hydroxyapatite from Fish Bones for Bone Regeneration.
    Kim SC; Heo SY; Oh GW; Yi M; Jung WK
    Mar Drugs; 2022 May; 20(6):. PubMed ID: 35736147
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Osteogenic differentiation and proliferation potentials of human bone marrow and umbilical cord-derived mesenchymal stem cells on the 3D-printed hydroxyapatite scaffolds.
    Meesuk L; Suwanprateeb J; Thammarakcharoen F; Tantrawatpan C; Kheolamai P; Palang I; Tantikanlayaporn D; Manochantr S
    Sci Rep; 2022 Nov; 12(1):19509. PubMed ID: 36376498
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Alginate hydrogels containing different concentrations of magnesium-containing poly(lactic-co-glycolic acid) microspheres for bone tissue engineering.
    Wang L; Li Y; Jiang S; Zhang Z; Zhao S; Song Y; Liu J; Tan F
    Biomed Mater; 2023 Aug; 18(5):. PubMed ID: 37478839
    [TBL] [Abstract][Full Text] [Related]  

  • 49. 3D printable and injectable lactoferrin-loaded carboxymethyl cellulose-glycol chitosan hydrogels for tissue engineering applications.
    Janarthanan G; Tran HN; Cha E; Lee C; Das D; Noh I
    Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():111008. PubMed ID: 32487412
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 3D-Printed Atsttrin-Incorporated Alginate/Hydroxyapatite Scaffold Promotes Bone Defect Regeneration with TNF/TNFR Signaling Involvement.
    Wang Q; Xia Q; Wu Y; Zhang X; Wen F; Chen X; Zhang S; Heng BC; He Y; Ouyang HW
    Adv Healthc Mater; 2015 Aug; 4(11):1701-8. PubMed ID: 26085382
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 3D-printed scaffolds with carbon nanotubes for bone tissue engineering: Fast and homogeneous one-step functionalization.
    Liu X; George MN; Park S; Miller Ii AL; Gaihre B; Li L; Waletzki BE; Terzic A; Yaszemski MJ; Lu L
    Acta Biomater; 2020 Jul; 111():129-140. PubMed ID: 32428680
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Low temperature hybrid 3D printing of hierarchically porous bone tissue engineering scaffolds with
    Lai J; Wang C; Liu J; Chen S; Liu C; Huang X; Wu J; Pan Y; Xie Y; Wang M
    Biofabrication; 2022 Aug; 14(4):. PubMed ID: 35896092
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Three-Dimensional-Printed Sodium Alginate and k-Carrageenan-Based Scaffolds with Potential Biomedical Applications.
    Stavarache C; Gȃrea SA; Serafim A; Olăreț E; Vlăsceanu GM; Marin MM; Iovu H
    Polymers (Basel); 2024 Jan; 16(3):. PubMed ID: 38337194
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cell-laden 3D bioprinting hydrogel matrix depending on different compositions for soft tissue engineering: Characterization and evaluation.
    Park J; Lee SJ; Chung S; Lee JH; Kim WD; Lee JY; Park SA
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():678-684. PubMed ID: 27987760
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Body temperature-activated protein-based injectable adhesive hydrogel incorporated with decellularized adipose extracellular matrix for tissue-specific regenerative stem cell therapy.
    Jeon EY; Joo KI; Cha HJ
    Acta Biomater; 2020 Sep; 114():244-255. PubMed ID: 32702528
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds.
    Bendtsen ST; Quinnell SP; Wei M
    J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bone tissue engineering scaffolds with HUVECs/hBMSCs cocultured on 3D-printed composite bioactive ceramic scaffolds promoted osteogenesis/angiogenesis.
    Liu X; Zhao N; Liang H; Tan B; Huang F; Hu H; Chen Y; Wang G; Ling Z; Liu C; Miao Y; Wang Y; Zou X
    J Orthop Translat; 2022 Nov; 37():152-162. PubMed ID: 36380884
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Simple Radical Polymerization of Poly(Alginate-Graft-N-Isopropylacrylamide) Injectable Thermoresponsive Hydrogel with the Potential for Localized and Sustained Delivery of Stem Cells and Bioactive Molecules.
    Pentlavalli S; Chambers P; Sathy BN; O'Doherty M; Chalanqui M; Kelly DJ; Haut-Donahue T; McCarthy HO; Dunne NJ
    Macromol Biosci; 2017 Nov; 17(11):. PubMed ID: 28714139
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dual-crosslinked methylcellulose hydrogels for 3D bioprinting applications.
    Shin JY; Yeo YH; Jeong JE; Park SA; Park WH
    Carbohydr Polym; 2020 Jun; 238():116192. PubMed ID: 32299570
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Thermoresponsive polymers and their biomedical application in tissue engineering - a review.
    Doberenz F; Zeng K; Willems C; Zhang K; Groth T
    J Mater Chem B; 2020 Jan; 8(4):607-628. PubMed ID: 31939978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.