These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 38131974)

  • 21. Current Status in the Utilization of Biobased Polymers for 3D Printing Process: A Systematic Review of the Materials, Processes, and Challenges.
    Shahbazi M; Jäger H
    ACS Appl Bio Mater; 2021 Jan; 4(1):325-369. PubMed ID: 35014287
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Control of maleic acid-propylene diepoxide hydrogel for 3D printing application for flexible tissue engineering scaffold with high resolution by end capping and graft polymerization.
    Tran HN; Kim IG; Kim JH; Chung EJ; Noh I
    Biomater Res; 2022 Dec; 26(1):75. PubMed ID: 36494708
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of Hydrocolloids on Rheological Properties and Printability of Vegetable Inks for 3D Food Printing.
    Kim HW; Lee JH; Park SM; Lee MH; Lee IW; Doh HS; Park HJ
    J Food Sci; 2018 Dec; 83(12):2923-2932. PubMed ID: 30506688
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chocolate-based Ink Three-dimensional Printing (Ci3DP).
    Karyappa R; Hashimoto M
    Sci Rep; 2019 Oct; 9(1):14178. PubMed ID: 31578354
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gallol-derived ECM-mimetic adhesive bioinks exhibiting temporal shear-thinning and stabilization behavior.
    Shin M; Galarraga JH; Kwon MY; Lee H; Burdick JA
    Acta Biomater; 2019 Sep; 95():165-175. PubMed ID: 30366132
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rheological behavior and particle alignment of cellulose nanocrystal and its composite hydrogels during 3D printing.
    Ma T; Lv L; Ouyang C; Hu X; Liao X; Song Y; Hu X
    Carbohydr Polym; 2021 Feb; 253():117217. PubMed ID: 33278981
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three-Dimensional-Printed Silica Aerogels for Thermal Insulation by Directly Writing Temperature-Induced Solidifiable Inks.
    Wang L; Feng J; Luo Y; Zhou Z; Jiang Y; Luo X; Xu L; Li L; Feng J
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40964-40975. PubMed ID: 34424660
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Printability of Double Network Alginate-Based Hydrogel for 3D Bio-Printed Complex Structures.
    Greco I; Miskovic V; Varon C; Marraffa C; Iorio CS
    Front Bioeng Biotechnol; 2022; 10():896166. PubMed ID: 35875487
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of 3D printability of composite dairy matrix by correlating with its rheological properties.
    Joshi S; Sahu JK; Bareen MA; Prakash S; Bhandari B; Sharma N; Naik SN
    Food Res Int; 2021 Mar; 141():110111. PubMed ID: 33641978
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D Bio-Printability of Hybrid Pre-Crosslinked Hydrogels.
    Nelson C; Tuladhar S; Launen L; Habib A
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948280
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D printing of tough hydrogels based on metal coordination with a two-step crosslinking strategy.
    Guo G; Wu Y; Du C; Yin J; Wu ZL; Zheng Q; Qian J
    J Mater Chem B; 2022 Mar; 10(13):2126-2134. PubMed ID: 35191448
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Insight into the correlations among rheological behaviour, protein molecular structure and 3D printability during the processing of surimi from golden pompano (Trachinotus ovatus).
    Liu Y; Sun Q; Wei S; Xia Q; Pan Y; Ji H; Deng C; Hao J; Liu S
    Food Chem; 2022 Mar; 371():131046. PubMed ID: 34537614
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rheological properties of cellulose nanofiber hydrogel for high-fidelity 3D printing.
    Shin S; Hyun J
    Carbohydr Polym; 2021 Jul; 263():117976. PubMed ID: 33858573
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Innovations in hydrogel-based manufacturing: A comprehensive review of direct ink writing technique for biomedical applications.
    Baniasadi H; Abidnejad R; Fazeli M; Lipponen J; Niskanen J; Kontturi E; Seppälä J; Rojas OJ
    Adv Colloid Interface Sci; 2024 Feb; 324():103095. PubMed ID: 38301316
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Additive manufacturing of silica aerogels.
    Zhao S; Siqueira G; Drdova S; Norris D; Ubert C; Bonnin A; Galmarini S; Ganobjak M; Pan Z; Brunner S; Nyström G; Wang J; Koebel MM; Malfait WJ
    Nature; 2020 Aug; 584(7821):387-392. PubMed ID: 32814885
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Silk fibroin reactive inks for 3D printing crypt-like structures.
    Heichel DL; Tumbic JA; Boch ME; Ma AWK; Burke KA
    Biomed Mater; 2020 Sep; 15(5):055037. PubMed ID: 32924975
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Graphene Oxide: An All-in-One Processing Additive for 3D Printing.
    García-Tuñón E; Feilden E; Zheng H; D'Elia E; Leong A; Saiz E
    ACS Appl Mater Interfaces; 2017 Sep; 9(38):32977-32989. PubMed ID: 28898053
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A review of high internal phase Pickering emulsions: Stabilization, rheology, and 3D printing application.
    He X; Lu Q
    Adv Colloid Interface Sci; 2024 Feb; 324():103086. PubMed ID: 38244533
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydroxyethyl Cellulose As a Rheological Additive for Tuning the Extrusion Printability and Scaffold Properties.
    Li X; Deng Q; Wang S; Li Q; Zhao W; Lin B; Luo Y; Zhang X
    3D Print Addit Manuf; 2021 Apr; 8(2):87-98. PubMed ID: 36655060
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of temperature on bio-printability of gelatin methacryloyl bioink in two-step cross-linking strategy for tissue engineering applications.
    Janmaleki M; Liu J; Kamkar M; Azarmanesh M; Sundararaj U; Nezhad AS
    Biomed Mater; 2020 Dec; 16(1):015021. PubMed ID: 33325382
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.