These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 38132132)

  • 1. The Structural Adaptations That Mediate Disuse-Induced Atrophy of Skeletal Muscle.
    Sayed RKA; Hibbert JE; Jorgenson KW; Hornberger TA
    Cells; 2023 Dec; 12(24):. PubMed ID: 38132132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying the Structural Adaptations that Drive the Mechanical Load-Induced Growth of Skeletal Muscle: A Scoping Review.
    Jorgenson KW; Phillips SM; Hornberger TA
    Cells; 2020 Jul; 9(7):. PubMed ID: 32660165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Agent-based computational model investigates muscle-specific responses to disuse-induced atrophy.
    Martin KS; Blemker SS; Peirce SM
    J Appl Physiol (1985); 2015 May; 118(10):1299-309. PubMed ID: 25722379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo alterations in skeletal muscle form and function after disuse atrophy.
    Clark BC
    Med Sci Sports Exerc; 2009 Oct; 41(10):1869-75. PubMed ID: 19727027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of skeletal muscle atrophy in response to disuse: clinical/preclinical contentions and fallacies of evidence.
    Atherton PJ; Greenhaff PL; Phillips SM; Bodine SC; Adams CM; Lang CH
    Am J Physiol Endocrinol Metab; 2016 Sep; 311(3):E594-604. PubMed ID: 27382036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skeletal Muscle Recovery from Disuse Atrophy: Protein Turnover Signaling and Strategies for Accelerating Muscle Regrowth.
    Mirzoev TM
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33114683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skeletal muscle immobilisation-induced atrophy: mechanistic insights from human studies.
    Deane CS; Piasecki M; Atherton PJ
    Clin Sci (Lond); 2024 Jun; 138(12):741-756. PubMed ID: 38895777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptomic and epigenetic regulation of disuse atrophy and the return to activity in skeletal muscle.
    Fisher AG; Seaborne RA; Hughes TM; Gutteridge A; Stewart C; Coulson JM; Sharples AP; Jarvis JC
    FASEB J; 2017 Dec; 31(12):5268-5282. PubMed ID: 28821632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aging affects the transcriptional regulation of human skeletal muscle disuse atrophy.
    Suetta C; Frandsen U; Jensen L; Jensen MM; Jespersen JG; Hvid LG; Bayer M; Petersson SJ; Schrøder HD; Andersen JL; Heinemeier KM; Aagaard P; Schjerling P; Kjaer M
    PLoS One; 2012; 7(12):e51238. PubMed ID: 23284670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative stress and disuse muscle atrophy: cause or consequence?
    Powers SK; Smuder AJ; Judge AR
    Curr Opin Clin Nutr Metab Care; 2012 May; 15(3):240-5. PubMed ID: 22466926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global deletion of CCL2 has adverse impacts on recovery of skeletal muscle fiber size and function and is muscle specific.
    Ferrara PJ; Reidy PT; Petrocelli JJ; Yee EM; Fix DK; Mahmassani ZS; Montgomery JA; McKenzie AI; de Hart NMMP; Drummond MJ
    J Appl Physiol (1985); 2023 Apr; 134(4):923-932. PubMed ID: 36861669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skeletal muscle atrophy during short-term disuse: implications for age-related sarcopenia.
    Wall BT; Dirks ML; van Loon LJ
    Ageing Res Rev; 2013 Sep; 12(4):898-906. PubMed ID: 23948422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skeletal muscle atrophy: disease-induced mechanisms may mask disuse atrophy.
    Malavaki CJ; Sakkas GK; Mitrou GI; Kalyva A; Stefanidis I; Myburgh KH; Karatzaferi C
    J Muscle Res Cell Motil; 2015 Dec; 36(6):405-21. PubMed ID: 26728748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Depressed contractile performance and reduced fatigue resistance in single skinned fibers of soleus muscle after long-term disuse in rats.
    Udaka J; Terui T; Ohtsuki I; Marumo K; Ishiwata S; Kurihara S; Fukuda N
    J Appl Physiol (1985); 2011 Oct; 111(4):1080-7. PubMed ID: 21719722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mini review: Proteomics approaches to understand disused vs. exercised human skeletal muscle.
    Cho Y; Ross RS
    Physiol Genomics; 2018 Sep; 50(9):746-757. PubMed ID: 29958080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Staging of disuse atrophy of skeletal muscles on immunofluorescence microscopy.
    Murakami T; Hijikata T; Yorifuji H
    Anat Sci Int; 2008 Jun; 83(2):68-76. PubMed ID: 18507615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skeletal Muscle Disuse Atrophy and the Rehabilitative Role of Protein in Recovery from Musculoskeletal Injury.
    Howard EE; Pasiakos SM; Fussell MA; Rodriguez NR
    Adv Nutr; 2020 Jul; 11(4):989-1001. PubMed ID: 32167129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic analysis of skeletal muscle tissue using SELDI-TOF MS: application to disuse atrophy.
    Clarke MS
    Methods Mol Biol; 2012; 818():131-41. PubMed ID: 22083821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ectopic expression of IGF-I and Shh by skeletal muscle inhibits disuse-mediated skeletal muscle atrophy and bone osteopenia in vivo.
    Alzghoul MB; Gerrard D; Watkins BA; Hannon K
    FASEB J; 2004 Jan; 18(1):221-3. PubMed ID: 14597562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasticity and function of human skeletal muscle in relation to disuse and rehabilitation: Influence of ageing and surgery.
    Suetta C
    Dan Med J; 2017 Aug; 64(8):. PubMed ID: 28869034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.