These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 38132132)

  • 21. Deletion of muscle
    Spradlin RA; Vassilakos G; Matheny MK; Jones NC; Goldman JL; Lei H; Barton ER
    J Appl Physiol (1985); 2021 Sep; 131(3):881-894. PubMed ID: 34292789
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Disuse-induced skeletal muscle atrophy in disease and nondisease states in humans: mechanisms, prevention, and recovery strategies.
    Nunes EA; Stokes T; McKendry J; Currier BS; Phillips SM
    Am J Physiol Cell Physiol; 2022 Jun; 322(6):C1068-C1084. PubMed ID: 35476500
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Angiotensin-(1-7) attenuates disuse skeletal muscle atrophy in mice via its receptor, Mas.
    Morales MG; Abrigo J; Acuña MJ; Santos RA; Bader M; Brandan E; Simon F; Olguin H; Cabrera D; Cabello-Verrugio C
    Dis Model Mech; 2016 Apr; 9(4):441-9. PubMed ID: 26851244
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitochondrial signaling contributes to disuse muscle atrophy.
    Powers SK; Wiggs MP; Duarte JA; Zergeroglu AM; Demirel HA
    Am J Physiol Endocrinol Metab; 2012 Jul; 303(1):E31-9. PubMed ID: 22395111
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prevention of muscle disuse atrophy by low-frequency electrical stimulation in rats.
    Dupont Salter AC; Richmond FJ; Loeb GE
    IEEE Trans Neural Syst Rehabil Eng; 2003 Sep; 11(3):218-26. PubMed ID: 14518784
    [TBL] [Abstract][Full Text] [Related]  

  • 26. AMP-Activated Protein Kinase as a Key Trigger for the Disuse-Induced Skeletal Muscle Remodeling.
    Vilchinskaya NA; Krivoi II; Shenkman BS
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30424476
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Disuse atrophy of human skeletal muscle: cell signaling and potential interventions.
    Urso ML
    Med Sci Sports Exerc; 2009 Oct; 41(10):1860-8. PubMed ID: 19727028
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gomisin G improves muscle strength by enhancing mitochondrial biogenesis and function in disuse muscle atrophic mice.
    Yeon M; Choi H; Chun KH; Lee JH; Jun HS
    Biomed Pharmacother; 2022 Sep; 153():113406. PubMed ID: 36076532
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human skeletal muscle fibre contractile properties and proteomic profile: adaptations to 3 weeks of unilateral lower limb suspension and active recovery.
    Brocca L; Longa E; Cannavino J; Seynnes O; de Vito G; McPhee J; Narici M; Pellegrino MA; Bottinelli R
    J Physiol; 2015 Dec; 593(24):5361-85. PubMed ID: 26369674
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Muscle disuse atrophy is not accompanied by changes in skeletal muscle satellite cell content.
    Snijders T; Wall BT; Dirks ML; Senden JM; Hartgens F; Dolmans J; Losen M; Verdijk LB; van Loon LJ
    Clin Sci (Lond); 2014 Apr; 126(8):557-66. PubMed ID: 24215591
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tetramethylpyrazine ameliorated disuse-induced gastrocnemius muscle atrophy in hindlimb unloading rats through suppression of Ca
    Hu NF; Chang H; Du B; Zhang QW; Arfat Y; Dang K; Gao YF
    Appl Physiol Nutr Metab; 2017 Feb; 42(2):117-127. PubMed ID: 28056188
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Disuse muscle atrophy-improving effect of ninjin'yoeito in a mouse model.
    Takemoto R; Sejima T; Han LK; Michihara S; Takahashi R
    Neuropeptides; 2021 Dec; 90():102199. PubMed ID: 34610544
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Morphological changes in rat hindlimb muscle fibres during recovery from disuse atrophy.
    Itai Y; Kariya Y; Hoshino Y
    Acta Physiol Scand; 2004 Jun; 181(2):217-24. PubMed ID: 15180794
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Membrane lipid rafts are disturbed in the response of rat skeletal muscle to short-term disuse.
    Petrov AM; Kravtsova VV; Matchkov VV; Vasiliev AN; Zefirov AL; Chibalin AV; Heiny JA; Krivoi II
    Am J Physiol Cell Physiol; 2017 May; 312(5):C627-C637. PubMed ID: 28274922
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Construction and Analysis of Disuse Atrophy Model of the Gastrocnemius Muscle in Chicken.
    Mo J; Wang Z; Liu Q; Li Z; Nie Q
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35805900
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nutritional strategies to attenuate muscle disuse atrophy.
    Wall BT; van Loon LJ
    Nutr Rev; 2013 Apr; 71(4):195-208. PubMed ID: 23550781
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of Protein Synthesis in Inactivated Skeletal Muscle: Signal Inputs, Protein Kinase Cascades, and Ribosome Biogenesis.
    Mirzoev TM; Shenkman BS
    Biochemistry (Mosc); 2018 Nov; 83(11):1299-1317. PubMed ID: 30482143
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Resistance to disuse atrophy in a turtle hindlimb muscle.
    McDonagh JC; Callister RJ; Favron ML; Stuart DG
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Apr; 190(4):321-9. PubMed ID: 14968256
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Type 2 diabetes mellitus related sarcopenia: a type of muscle loss distinct from sarcopenia and disuse muscle atrophy.
    Liu Z; Guo Y; Zheng C
    Front Endocrinol (Lausanne); 2024; 15():1375610. PubMed ID: 38854688
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Age-Related Susceptibility to Muscle Damage Following Mechanotherapy in Rats Recovering From Disuse Atrophy.
    Hettinger ZR; Hamagata K; Confides AL; Lawrence MM; Miller BF; Butterfield TA; Dupont-Versteegden EE
    J Gerontol A Biol Sci Med Sci; 2021 Nov; 76(12):2132-2140. PubMed ID: 34181006
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.