These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 38132550)

  • 21. Nonparametric Online Learning Control for Soft Continuum Robot: An Enabling Technique for Effective Endoscopic Navigation.
    Lee KH; Fu DKC; Leong MCW; Chow M; Fu HC; Althoefer K; Sze KY; Yeung CK; Kwok KW
    Soft Robot; 2017 Dec; 4(4):324-337. PubMed ID: 29251567
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic modeling of soft continuum manipulators using lie group variational integration.
    Tariverdi A; Venkiteswaran VK; Martinsen ØG; Elle OJ; Tørresen J; Misra S
    PLoS One; 2020; 15(7):e0236121. PubMed ID: 32697813
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A bioinspired fishbone continuum robot with rigid-flexible-soft coupling structure.
    Zhou P; Yao J; Zhang S; Wei C; Zhang H; Qi S
    Bioinspir Biomim; 2022 Oct; 17(6):. PubMed ID: 35998612
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Feasibility of Fiber Reinforcement Within Magnetically Actuated Soft Continuum Robots.
    Lloyd P; Koszowska Z; Di Lecce M; Onaizah O; Chandler JH; Valdastri P
    Front Robot AI; 2021; 8():715662. PubMed ID: 34307470
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Learning Inverse Statics Models Efficiently With Symmetry-Based Exploration.
    Rayyes R; Kubus D; Steil J
    Front Neurorobot; 2018; 12():68. PubMed ID: 30405387
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimal Design of Electrode Topology of Dielectric Elastomer Actuators Based on the Parameterized Level Set Method.
    Zhang P; Yan Z; Luo K; Tian Q
    Soft Robot; 2023 Feb; 10(1):106-118. PubMed ID: 35648050
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Programmable Morphing Hydrogels for Soft Actuators and Robots: From Structure Designs to Active Functions.
    Jiao D; Zhu QL; Li CY; Zheng Q; Wu ZL
    Acc Chem Res; 2022 Jun; 55(11):1533-1545. PubMed ID: 35413187
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bidirectional recurrent learning of inverse dynamic models for robots with elastic joints: a real-time real-world implementation.
    Valencia-Vidal B; Ros E; Abadía I; Luque NR
    Front Neurorobot; 2023; 17():1166911. PubMed ID: 37396028
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Model-free motion control of continuum robots based on a zeroing neurodynamic approach.
    Tan N; Yu P; Zhang X; Wang T
    Neural Netw; 2021 Jan; 133():21-31. PubMed ID: 33099245
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reachability Improvement of a Climbing Robot Based on Large Deformations Induced by Tri-Tube Soft Actuators.
    Kanada A; Giardina F; Howison T; Mashimo T; Iida F
    Soft Robot; 2019 Aug; 6(4):483-494. PubMed ID: 30917091
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design and kinematic of a dexterous bioinspired elephant trunk robot with variable diameter.
    Zhou P; Yao J; Wei C; Zhang S; Zhang H; Qi S
    Bioinspir Biomim; 2022 Jun; 17(4):. PubMed ID: 35609564
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging.
    Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH
    Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Towards optimal deep fusion of imaging and clinical data via a model-based description of fusion quality.
    Wang Y; Li X; Konanur M; Konkel B; Seyferth E; Brajer N; Liu JG; Bashir MR; Lafata KJ
    Med Phys; 2023 Jun; 50(6):3526-3537. PubMed ID: 36548913
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An octopus-bioinspired solution to movement and manipulation for soft robots.
    Calisti M; Giorelli M; Levy G; Mazzolai B; Hochner B; Laschi C; Dario P
    Bioinspir Biomim; 2011 Sep; 6(3):036002. PubMed ID: 21670493
    [TBL] [Abstract][Full Text] [Related]  

  • 35. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
    Vu H; Kim HC; Jung M; Lee JH
    Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toward Conductive Polymer-Based Soft Milli-Robots for Vacuum Applications.
    Benouhiba A; Rougeot P; Ouisse M; Clévy C; Andreff N; Rabenorosoa K
    Front Robot AI; 2019; 6():122. PubMed ID: 33501137
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Deep Learning Framework for Soft Robots with Synthetic Data.
    Sapai S; Loo JY; Ding ZY; Tan CP; Baskaran VM; Nurzaman SG
    Soft Robot; 2023 Dec; 10(6):1224-1240. PubMed ID: 37590485
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A computer vision image differential approach for automatic detection of aggressive behavior in pigs using deep learning.
    Fraser J; Aricibasi H; Tulpan D; Bergeron R
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 37813375
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent Developments of Actuation Mechanisms for Continuum Robots: A Review.
    Seleem IA; El-Hussieny H; Ishii H
    Int J Control Autom Syst; 2023; 21(5):1592-1609. PubMed ID: 37151813
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Environment-Adaptive Object Detection Framework for Autonomous Mobile Robots.
    Shin D; Cho J; Kim J
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.