These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 38132556)

  • 21. In vitro and in vivo bone formation potential of surface calcium phosphate-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds.
    Poh PSP; Hutmacher DW; Holzapfel BM; Solanki AK; Stevens MM; Woodruff MA
    Acta Biomater; 2016 Jan; 30():319-333. PubMed ID: 26563472
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Drug Loaded 3D-Printed Poly(ε-Caprolactone) Scaffolds for Local Antibacterial or Anti-Inflammatory Treatment in Bone Regeneration.
    Stepanova M; Averianov I; Gofman I; Shevchenko N; Rubinstein A; Egorova T; Trulioff A; Nashchekina Y; Kudryavtsev I; Demyanova E; Korzhikova-Vlakh E; Korzhikov-Vlakh V
    Polymers (Basel); 2023 Sep; 15(19):. PubMed ID: 37836006
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancing the Hydrophilicity and Cell Attachment of 3D Printed PCL/Graphene Scaffolds for Bone Tissue Engineering.
    Wang W; Caetano G; Ambler WS; Blaker JJ; Frade MA; Mandal P; Diver C; Bártolo P
    Materials (Basel); 2016 Dec; 9(12):. PubMed ID: 28774112
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chitosan functionalized poly-ε-caprolactone electrospun fibers and 3D printed scaffolds as antibacterial materials for tissue engineering applications.
    Tardajos MG; Cama G; Dash M; Misseeuw L; Gheysens T; Gorzelanny C; Coenye T; Dubruel P
    Carbohydr Polym; 2018 Jul; 191():127-135. PubMed ID: 29661300
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D printing of hybrid biomaterials for bone tissue engineering: Calcium-polyphosphate microparticles encapsulated by polycaprolactone.
    Neufurth M; Wang X; Wang S; Steffen R; Ackermann M; Haep ND; Schröder HC; Müller WEG
    Acta Biomater; 2017 Dec; 64():377-388. PubMed ID: 28966095
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synergistic Effect of Static Magnetic Fields and 3D-Printed Iron-Oxide-Nanoparticle-Containing Calcium Silicate/Poly-ε-Caprolactone Scaffolds for Bone Tissue Engineering.
    Kao CY; Lin TL; Lin YH; Lee AK; Ng SY; Huang TH; Hsu TT
    Cells; 2022 Dec; 11(24):. PubMed ID: 36552731
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative studies on thin polycaprolactone-tricalcium phosphate composite scaffolds and its interaction with mesenchymal stem cells.
    Janarthanan G; Kim IG; Chung EJ; Noh I
    Biomater Res; 2019; 23():1. PubMed ID: 30788137
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Additive Manufacturing of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/poly(ε-caprolactone) Blend Scaffolds for Tissue Engineering.
    Puppi D; Morelli A; Chiellini F
    Bioengineering (Basel); 2017 May; 4(2):. PubMed ID: 28952527
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.
    Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X
    J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of 3D-Printed Poly-ɛ-Caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix.
    Nyberg E; Rindone A; Dorafshar A; Grayson WL
    Tissue Eng Part A; 2017 Jun; 23(11-12):503-514. PubMed ID: 28027692
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gelatin nanoparticles loaded poly(ε-caprolactone) nanofibrous semi-synthetic scaffolds for bone tissue engineering.
    Binulal NS; Natarajan A; Menon D; Bhaskaran VK; Mony U; Nair SV
    Biomed Mater; 2012 Dec; 7(6):065001. PubMed ID: 23047255
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The influence of poly(ester amide) on the structural and functional features of 3D additive manufactured poly(ε-caprolactone) scaffolds.
    Gloria A; Frydman B; Lamas ML; Serra AC; Martorelli M; Coelho JFJ; Fonseca AC; Domingos M
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():994-1004. PubMed ID: 30813106
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adhesion, proliferation and osteogenic differentiation of mesenchymal stem cells in 3D printed poly-ε-caprolactone/hydroxyapatite scaffolds combined with bone marrow clots.
    Zheng P; Yao Q; Mao F; Liu N; Xu Y; Wei B; Wang L
    Mol Med Rep; 2017 Oct; 16(4):5078-5084. PubMed ID: 28849142
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Melt electrowriting of a biocompatible photo-crosslinkable poly(D,L-lactic acid)/poly(ε-caprolactone)-based material with tunable mechanical and functionalization properties.
    Darroch C; Asaro GA; Gréant C; Suku M; Pien N; van Vlierberghe S; Monaghan MG
    J Biomed Mater Res A; 2023 Jun; 111(6):851-862. PubMed ID: 36951312
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Antimicrobial Activity of 3D-Printed Poly(ε-Caprolactone) (PCL) Composite Scaffolds Presenting Vancomycin-Loaded Polylactic Acid-Glycolic Acid (PLGA) Microspheres.
    Zhou Z; Yao Q; Li L; Zhang X; Wei B; Yuan L; Wang L
    Med Sci Monit; 2018 Sep; 24():6934-6945. PubMed ID: 30269152
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical testing of electrospun PCL fibers.
    Croisier F; Duwez AS; Jérôme C; Léonard AF; van der Werf KO; Dijkstra PJ; Bennink ML
    Acta Biomater; 2012 Jan; 8(1):218-24. PubMed ID: 21878398
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Uniformly-dispersed nanohydroxapatite-reinforced poly(ε-caprolactone) composite films for tendon tissue engineering application.
    Tong SY; Wang Z; Lim PN; Wang W; Thian ES
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 2):1149-1155. PubMed ID: 27772716
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechano-morphological studies of aligned nanofibrous scaffolds of polycaprolactone fabricated by electrospinning.
    Thomas V; Jose MV; Chowdhury S; Sullivan JF; Dean DR; Vohra YK
    J Biomater Sci Polym Ed; 2006; 17(9):969-84. PubMed ID: 17094636
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Corneal stromal regeneration by hybrid oriented poly (ε-caprolactone)/lyophilized silk fibroin electrospun scaffold.
    Orash Mahmoud Salehi A; Nourbakhsh MS; Rafienia M; Baradaran-Rafii A; Heidari Keshel S
    Int J Biol Macromol; 2020 Oct; 161():377-388. PubMed ID: 32526297
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of Electrospun Poly(ε-caprolactone) and Poly(lactic acid) Fiber Scaffolds to Generate 3D In Vitro Models of Colorectal Adenocarcinoma: A Preliminary Study.
    Ricci C; Azimi B; Panariello L; Antognoli B; Cecchini B; Rovelli R; Rustembek M; Cinelli P; Milazzo M; Danti S; Lazzeri A
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.